
Summary on Value Function Approximation
Christopher Mutschler



Value Function Approximation
• In practice we often need to approximate the value function, because:

• (Explicit) tabular representations require too much space
• We want to generalize information across state (see also: POMDPs!)

• For linear function approximation almost all convergence guarantees hold
• For non-linear function approximation such guarantees cannot be given
• But careful scheduling and several tricks help to stabilize training

• But:
• Non-linear function approximation is very sensitive to hyper-parameter tuning!
• See also: https://www.youtube.com/watch?v=Vh4H0gOwdIg

(not directly related but definitely worth watching!)
• And also: https://www.alexirpan.com/2018/02/14/rl-hard.html

(but please read with humor)

Summary on Value Function Approximation 2

https://www.youtube.com/watch?v=Vh4H0gOwdIg
https://www.alexirpan.com/2018/02/14/rl-hard.html


The Deadly Triad
• Stability in RL is a very serious thing!
• Instability and divergence in RL

mainly stem from
1. Function Approximation.
2. Bootstrapping.
3. Off-policy training.

• Unfortunately, in most of the case
we really use the full combination.

Summary on Value Function Approximation 3



Published as a conference paper at ICLR 2021

binned encoding: if ci < z < ci+1, then �(z) returns ei the one-hot (standard basis) vector with a 1
in the i-th entry and zero elsewhere. For values of z that fall on the boundary, z = ci, the encoding
returns a vector with ones in both the i�1th and ith entries. Consider the below example for intuition.

Example. Assume [l, u] = [0, 1] and set the tile width to � = 0.25. Then the tiling vector c has
four tiles (k = 4): c = (0, 0.25, 0.5, 0.75). If we apply the tiling activation to z = 0.3, because
0.25 < 0.3 < 0.5, the output should be (0, 1, 0, 0). To see �(z) does in fact return this vector, we
compute each max term
max(c� z, 0) = (0, 0, 0.2, 0.45) and max(z� �� c, 0) = max(0.05� c, 0) = (0.05, 0, 0, 0).

The addition of the two is (0.05, 0, 0.2, 0.45) and so 1� I+(0.05, 0, 0.2, 0.45) = 1� (1, 0, 1, 1) =
(0, 1, 0, 0). The first max extracts those components in c that are strictly greater than z, and the
second max extracts those strictly less than z. The addition gives the bins that are strictly greater and
strictly less than the bin for z, leaving only the entry corresponding to that activated bin as 0, with all
others positive. The indicator function sets all nonzero entries to one and then using one minus this
indicator function’s output provides us the desired binary encoding. We rigorously characterize the
possible output cases for the activation in the Appendix A.2.1.

3.2 FUZZY TILING ACTIVATION (FTA)

The Tiling Activation provides a way to obtain sparse, binary encodings for features learned within
a NN. Unfortunately, the tiling activation has a zero derivative almost everywhere as visualized in
Figure 1(a). In this section, we provide a fuzzy tiling activation, that has non-zero derivatives and so
is amenable to use with backpropagation.

To design the FTA, we define the fuzzy indicator function2

I⌘,+(x)
def
= I+(⌘ � x)x+ I+(x� ⌘) (3)

where ⌘ is a small constant for controlling the sparsity. The first term I+(⌘ � x) is 1 if x < ⌘, and 0
otherwise. The second term I+(x�⌘) is 1 if x > ⌘, and 0 otherwise. If x < ⌘, then I⌘,+(x) = x, and
else I⌘,+(x) = 1. The original indicator function I+ can be acquired by setting ⌘ = 0. When ⌘ > 0,
the derivative is non-zero for x < ⌘, and zero otherwise. Hence the derivative can be propagated
backwards through those nonzero entries. Using this fuzzy indicator function, we define the following
Fuzzy Tiling Activation (FTA)

�⌘(z)
def
= 1� I⌘,+(max(c� z, 0) + max(z � � � c, 0)) (4)

where again I⌘,+ is applied elementwise.

We depict FTA with different ⌘s in Figure 3.1. For the smaller ⌘, the FTA extends the activation to the
neighbouring bins. The activation in these neighbouring bins is sloped, resulting in non-zero deriva-
tives. For this smaller ⌘, however, there are still regions where the derivative is zero (e.g., z = 0.3 in
Figure 1(b)). The regions where derivatives are non-zero can be expanded by increasing ⌘ as shown
in Figure 1(c). Hence we can adjust ⌘ to control the sparsity level as we demonstrate in Section A.5.

F

F

Figure 2: A visualization of an FTA layer

Figure 2 shows a neural network with FTA
applied to the second hidden layer and its
output y is linear in the sparse representation.
FTA itself does not introduce any new train-
ing parameters, just like other activation func-
tions. For input x, after computing first layer
h1 = xW1, we apply �⌘(z) to h1W2 2 Rd

to get the layer h2 of size kd. This layer
consists of stacking the k-dimensional sparse
encodings, for each element in h1W2.

3.3 GUARANTEED SPARSITY FROM THE FTA

We now show that the FTA maintains one of the key properties of the tiling activation: sparsity. The
distinction with many existing approaches is that our sparsity is guaranteed by design and hence is

2The word fuzzy reflects that an input can partially activate a tile, with a lower activation than 1, as an
analogy to the concept of partial inclusion and degrees of membership from fuzzy sets.

4

Fuzzy Tiling Activations
• DQNs need target networks to reduce the

chance of divergence
• Main reason:

• The Q-Targets are non-stationary and moving
• over subsequent gradient descent steps

• Idea:
• Introduce a special activation function that produces sparse representations!

i.e., updates on a particular Q-value does no affect nearby
Q-values that much.

• FTA layers stack 𝑘-dimensional sparse encodings
for each element ℎ!𝑊" (ℎ! = 𝑥𝑊!)

Pan et al.: Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online. ICLR 2021.

Published as a conference paper at ICLR 2021

et al., 2015) parameterizes the action-value function Q✓ : S ⇥A 7! R by a NN. The bootstrap target
for updating a state-action value is computed by using a separate target NN Q✓� : S ⇥ A 7! R
parameterized by ✓�: yt = rt+1 + �maxa0 Q✓�(st+1, a0). The target NN parameter ✓� is updated
by copying from ✓ every certain number of time steps.

Online deep RL control problems can be highly nonstationary, for two primary reasons. First, the
environment itself could be highly nonstationary, or alternatively, partially observable. Second, the
data distribution is constantly shifting because of both the changing policy and shifting training
targets. The latter can be mitigated by using a target NN as described above, which has become
critical in successfully training many deep RL algorithms. However, it potentially slows learning as
the new information is not immediately used to update action-values; instead, the slower moving and
potentially out-dated target NN is used. Several works reported that successful training without a
target NN can improve sample efficiency of RL algorithms (Liu et al., 2019; van Hasselt et al., 2018;
Fan et al., 2020; Kim et al., 2019; Rafati & Noelle, 2019; Fan et al., 2020; Ghiassian et al., 2020). We
show that deep RL algorithms using our activation is able to achieve superior performance without
using a target NN, indicating the benefit of applying our method to nonstationary, online problems.

3 BINNING WITH NON-NEGLIGIBLE GRADIENTS

In this section, we develop the Fuzzy Tiling Activation (FTA), as a new modular component for neural
networks that provides sparse representations. We first introduce a new way to compute the binning of
an input, using indicator functions. This activation provides guaranteed sparsity but has a gradient of
zero almost everywhere. Then, we provide a smoothed version, resulting in non-negligible gradients
that make it compatible with back-propagation algorithms. We then prove that the fuzzy version is
still guaranteed to provide sparse representation and the sparsity can be easily tuned.

3.1 TILING ACTIVATION

The tiling activation inputs a scalar z and outputs a binned vector. This vector is one-hot, with a
1 in the bin corresponding to the value of z, and zeros elsewhere. Note that a standard activation
typically maps a scalar to a scalar. However, the tiling activation maps a scalar to a vector, as depicted
in Figure 1(a). This resembles tile coding, which inspires the name Tiling Activation; to see this
connection, we include a brief review of tile coding in the Appendix A.1. In this section, we show
how to write the tiling activation compactly, using element-wise max and indicator functions.

z

h1

h2

h3

h4

(a) TA, k = 4

z

h1

h2

h3

h4

(b) FTA, k = 4, ⌘ = 0.1

z

h1

h2

h3

h4

(c) FTA, k = 4, ⌘ = 0.25

Figure 1: a) The regular TA mapping R ! Rk, with each output element hi corresponds to a different bin. b)
The FTA with ⌘ > 0, permitting both overlap in activation, and nonzero gradient between the vertical red and
gray lines. c) Larger values for ⌘ extends the sloped lines further from either side of each plateau, increasing the
region that has non-negligible gradients.
Assume we are given a range [l, u] for constants l, u 2 R, where we expect the input z 2 [l, u]. The
goal is to convert the input, to a one-hot encoding, with evenly spaced bins of size � 2 R+. Without
loss of generality, we assume that u� l is evenly divisible by �; if it is not, the range [l, u] could be
slightly expanded, evenly on each side, to ensure divisibility. Define the k-dimensional tiling vector

c
def
= (l, l + �, l + 2�, ..., u� 2�, u� �). (1)

where k = (u� l)/�. The tiling activation is defined as

�(z)
def
= 1� I+(max(c� z, 0) + max(z � � � c, 0)) (2)

where I+(·) is an indicator function, which returns 1 if the input is positive, and zero otherwise. The
indicator function for vectors is applied element-wise. In Proposition 1, we prove that � returns a

3

Summary on Value Function Approximation 4



Lesson of today
“Be careful with (non-linear) function approximation”

Summary on Value Function Approximation 5



References

Books:
• Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Lectures:
• Pieter Abbeel: CS 188 Introduction to Artificial Intelligence. Fall 2018
• UCL Course on RL. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Web:
• https://medium.com/init27-labs/understanding-q-learning-the-cliff-walking-problem-80198921abbc
• https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
• https://danieltakeshi.github.io/2016/10/31/going-deeper-into-reinforcement-learning-understanding-q-

learning-and-linear-function-approximation/
• http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/deep_rl.pdf

Summary on Value Function Approximation 6

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://medium.com/init27-labs/understanding-q-learning-the-cliff-walking-problem-80198921abbc

