Trust-Region Policy Optimization
Christopher Mutschler
Policy Gradients so far

• We wanted to do the following:

\[
\max_{\theta} J(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left(\sum_{t=0}^{\infty} \gamma^t r_t \right)
\]

• Then we defined the policy gradient:

\[
g = \nabla_\theta J(\pi_\theta) = \nabla_\theta \mathbb{E}_{\pi_\theta} G(\tau) \approx \frac{1}{L} \sum_{\tau} \sum_{t=0}^{T} \nabla_\theta \log \pi_\theta (a_t | s_t) \hat{A}_t
\]

• If \(\hat{A}_t > 0 \) (< 0):
 • Gradient becomes positive (negative)
 • The probability of taking \(a_t \) in \(s_t \) is increased (decreased)

• We update our policy parameters by

\[
\theta_{k+1} = \theta_k + \alpha \cdot g
\]

Take a gradient step in updating the policy (gradient ascent)
Policy Gradients so far

Loop forever:
1. collect trajectories via policy π_θ
2. Estimate advantage function $A^{\pi_\theta}(a_t | s_t)$
3. Compute policy gradient:

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left(\sum_t \nabla_\theta \log \pi_\theta(a_t | s_t) A^{\pi_\theta}(a_t | s_t) \right)$$

4. Update policy parameters $\theta_{new} \leftarrow \theta + \alpha \nabla J(\theta)$

http://ai.berkeley.edu/lecture_slides.html
Policy Gradients so far

Problem

• Run gradient descent/ascent on one batch of collected experience

• Note: the advantage function (which is a noisy estimate) may not be accurate
 • Too large steps may lead to a disaster (even if the gradient is correct)
 • Too small steps are also bad

• Definition and scheduling of learning rates in RL is tricky as the underlying data distribution changes with updates to the policy

• Mathematical formulation:
 • First-order derivatives approximate the (parameter) surface to be flat
 • But if the surface exhibits high curvature it gets dangerous
 • Projection: small changes in parameter space might lead to large changes in policy space!

• Parameters θ get updated to areas too far out of the range from where previous data was collected (note: a bad policy leads to bad data)

Primer: Natural Policy Gradient

There is something wrong with the policy gradient. Example:

\begin{itemize}
\item \(r(s_t, a_t) = -s_t^2 - a_t^2 \)
\item \(\log \pi_\theta(a_t | s_t) = -\frac{1}{2\sigma^2} (ks_t - a_t)^2 + c \), with \(\theta = (k, \sigma) \)
\end{itemize}

\[\text{Exploration} \ \theta = \sigma \]

\[\text{Controller gain} \ \theta = k \]

\[\text{poor conditioning} \]

Peters et al.: Natural Actor-Critic. 2018

* Example take from Sergey Levine’s CS285: Advanced Policy Gradients
Primer: Natural Policy Gradient

• Given:
 • $\theta \leftarrow \theta + \alpha \nabla \theta J(\theta)$ and $\pi_\theta (a_t|s_t)$
 • Some parameters change probabilities a lot more than other!
 → a single value for α is not sufficient

• What we essentially do (optimization perspective on 1st order gradient descent):
 • $\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla \theta J(\theta)$, subject to $\|\theta' - \theta\|^2 \leq \epsilon$
 • $\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla \theta J(\theta)$, subject to $D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$

But how to rescale???

→ For instance, KL-divergence

Better with 2nd order information

→ $\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla \theta J(\theta)$, s.t. $\|\theta' - \theta\|^2 \leq \epsilon$
→ $\theta \leftarrow \theta + \alpha F^{-1} \nabla \theta J(\theta)$
Trust-Region Policy Optimization (TRPO)

“Simple” Idea

Regularize updates to the policy parameters, such that the policy does not change too much.
Primer: Trust-Region Methods

Optimization in Machine Learning

- It is common to formulate ML problems as optimization problems:
 - Minimize the squared error
 - Minimize the cross entropy
 - Maximize the log-likelihood
 - Maximize the discounted sum of rewards
 - Minimize the sum of control cost
Primer: Trust-Region Methods

Optimization in Machine Learning: two classes

1. Line Search, e.g., gradient descent
 • find a (some) direction of improvement
 • (cleverly) select a step length

2. Trust-Region Methods
 • select a trust region (analog to max step length)
 • find a point of improvement in that region
Primer: Trust-Region Methods

• Idea:
 • Approximate the real objective f with something simpler, i.e., \tilde{f}
 • Solve $\tilde{x}^* = \arg\min_x \tilde{f}(x)$

• Problem:
 • The optimum \tilde{x}^* might be in a region where \tilde{f} poorly approximates f
 • \tilde{x}^* might be far from optimal

• Solution:
 • Restrict the search to a region tr where we trust \tilde{f} to approximate f well
 • Solve $\tilde{x}^* = \arg\min_{x \in tr} \tilde{f}(x)$
Primer: Trust-Region Methods

2nd order Taylor approximation

- Example: chose \tilde{f} to be quadratic approximation of f:

$$f(x) \approx \tilde{f}(x) = f(c) + \nabla f(c)^T (x - c) + \frac{1}{2!} (x - c)^T H(c)(x - c),$$

where ∇f is the gradient and H is the Hessian

$$\rightarrow p_n(x) = \sum_{j=0}^{n} \frac{1}{j!} f^{(j)}(a)(x - a)^j$$

Example: nth order Taylor approximation of $f(x) = e^{-x^2}, c = 1$

- $p_0(x) = 0.37$
- $p_1(x) = p_0(x) - 0.74 \cdot (x - 1)$
- $p_2(x) = p_1(x) + 0.74 \cdot \frac{(x - 1)^2}{2!}$
- $p_3(x) = p_2(x) + 1.47 \cdot \frac{(x - 1)^3}{3!}$
Primer: Trust-Region Methods

2nd order Taylor approximation

- Example: chose \(\hat{f} \) to be quadratic approximation of \(f \):

\[
f(x) \approx \hat{f}(x) = f(c) + \nabla f(c)^T(x - c) + \frac{1}{2!}(x - c)^T H(c)(x - c),
\]

where \(\nabla f \) is the gradient and \(H \) is the Hessian

- The trust region is often chosen to be a hypersphere:

\[
\|x - c\|_2 \leq \delta
\]
Primer: Trust-Region Methods

Initialize $\delta, x_0^*, n = 0$
Loop forever:
1. $n \leftarrow n + 1$
2. Solve $x_n^* = \arg \min_x \tilde{f}(x)$
 subject to $\|x - x_{n-1}^*\|_2 \leq \delta$
3. If $\tilde{f}(x) \approx f(x_n^*)$: increase δ,
 else: decrease δ
Primer: Trust-Region Methods

2nd order Taylor approximation

- \tilde{f} often chosen to be quadratic approximation of f:

$$
\min_{x} f(c) + \nabla f(c)^T(x - c) + \frac{1}{2!} (x - c)^T H(c)(x - c),
$$
subject to $\|x - c\|_2 \leq \delta$.

- When H is positive semi-definite
 - Convex optimization
 - Simple and globally optimal solution
 - e.g.: conjugate gradient

- When H is not positive semi-definite
 - Non-convex optimization
 - Simple heuristics that guarantee improvement
Trust-Region Policy Optimization (TRPO)

So back to what we actually do…

The problem(s) of the Policy Gradient (PG) is that

• PG keeps old and new policy close in parameter space, while
• small changes can lead to large differences in performance, and
• “large” step-sizes hurt performance (whatever “large” means…)

Loop forever:
1. collect trajectories via policy \(\pi_\theta\)
2. Estimate advantage function \(A^\pi_\theta(s_t|a_t)\)
3. Compute policy gradient:
 \[\nabla J(\theta) = \mathbb{E}_{t \sim \pi_\theta} \left(\sum_t \nabla_\theta \log \pi_\theta(a_t|s_t) A^\pi_\theta(s_t|a_t) \right) \]
4. Update policy parameters \(\theta_{new} \leftarrow \theta + \alpha \nabla J(\theta)\)

Non-stationary input data due to changing policy and reward distribution change

Update carefully ➔ We want improvement and not degradation
Trust-Region Policy Optimization (TRPO)

• We want to optimize \(\eta(\pi) \), i.e., the expected return of policy \(\pi \):

\[
\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi_{old}(\cdot|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]
\]

• We collect data with \(\pi_{old} \) and optimize to get a new policy \(\pi_{new} \)

• In fact, so far...
 • we did not really optimize anything, as
 • we just favored those \((a_t|s_t)\) that had a higher advantage

• Question:
 • How can we write down an optimization problem that allows to do small updates on a policy \(\pi \) based on data sampled from \(\pi \) (on-policy data)?

\footnote{Kakade et al.: Approximately Optimal Approximate Reinforcement Learning. ICML 2002.}
Trust-Region Policy Optimization (TRPO)

- We want to optimize $\eta(\pi)$, i.e., the expected return of policy π:

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a_t \sim \pi_{old} \mid s_t} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

- We collect data with π_{old} and optimize to get a new policy π_{new}.

- Let’s express $\eta(\pi_{new})$ in terms of advantage over the original policy1:

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \mathbb{E}_{t \sim \pi_{new}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{old}}(s_t, a_t) \right]$$

Trust-Region Policy Optimization (TRPO)

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π:

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_{\pi_{old}} a_t \sim \pi_{old}(\cdot|s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

• We collect data with π_{old} and optimize to get a new policy π_{new}

• Let’s express $\eta(\pi_{new})$ in terms of advantage over the original policy1:

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \mathbb{E}_{t \sim \pi_{new}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{old}}(s_t, a_t) \right]$$

$$= \eta(\pi_{old}) + \sum_{s} \rho_{\pi_{new}}(s) \sum_{a} \pi_{new}(a|s) A_{\pi_{old}}(s, a)$$

Discounted visitation frequency according to new policy:

$$\rho_{\pi_{new}}(s) = P(s_0 = s) + \gamma P(s_1 = s) + \gamma^2 P(s_2 = s) + \ldots$$

Trust-Region Policy Optimization (TRPO)

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π:

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a_t \sim \pi_{old}(\cdot|s)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

• We collect data with π_{old} and optimize to get a new policy π_{new}

• Let’s express $\eta(\pi_{new})$ in terms of advantage over the original policy:

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \mathbb{E}_{\tau \sim \pi_{new}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{old}}(s_t, a_t) \right]$$

$$= \eta(\pi_{old}) + \sum_s \rho_{\pi_{new}}(s) \sum_a \pi_{new}(a|s) A_{\pi_{old}}(s, a) > 0$$

If we can guarantee this…

\rightarrow New objective guarantees improvement from $\pi_{old} \rightarrow \pi_{new}$
Trust-Region Policy Optimization (TRPO)

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π:

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi_{old}(\cdot | s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

• We collect data with π_{old} and optimize to get a new policy π_{new}

• Let’s express $\eta(\pi_{new})$ in terms of advantage over the original policy:

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \mathbb{E}_{t \sim \pi_{new}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{old}}(s_t, a_t) \right]$$

$$= \eta(\pi_{old}) + \sum_s \rho_{\pi_{new}}(s) \sum_a \pi_{new}(a | s) A_{\pi_{old}}(s, a)$$

However, this cannot be easily estimated. The state visitations that we sampled so far are coming from the old policy!

\Rightarrow we cannot optimize this in the current form!
Trust-Region Policy Optimization (TRPO)

\[
\eta(\pi_{new}) = \eta(\pi_{old}) + \sum_s \rho_{\pi_{new}}(s) \sum_a \pi_{new}(a|s)A_{\pi_{old}}(s, a)
\]

\[
L(\pi_{new}) = \eta(\pi_{old}) + \sum_s \rho_{\pi_{old}}(s) \sum_a \pi_{new}(a|s)A_{\pi_{old}}(s, a)
\]

• The approximation is accurate within step size δ (trust region)
 • δ needs to be chosen based on a lower-bound approximation error
• Monotonic improvement guaranteed
 • (within the green region!)

Trust region

\[\pi_{\theta_{new}}(s, a) \text{ does not change too much} \]
Trust-Region Policy Optimization (TRPO)

• If we want to optimize $L(\theta_{new})$ instead of $\eta(\theta_{new})$ … with a guarantee of monotonic improvement on $\eta(\theta_{new})$, … … we need a bound on $L(\theta_{new})$.

• It can be proven that there exists the following bound1,2:

$$\eta(\pi_{new}) \geq L(\pi_{new}) - C \cdot D_{KL}^{max}(\pi_{old}, \pi_{new}), \text{ where } C = \frac{4\varepsilon\gamma}{(1-\gamma)^2}$$

1 Schulman et al.: Trust-Region Policy Optimization. ICML 2015.
Primer: KL-Divergence

• A measure of distance between two probability distributions P and Q:

$$D_{KL}(P \parallel Q) = \mathbb{E}_{x \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \mathbb{E}_{x \sim P} [\log P(x) - \log Q(x)]$$

• Intuition stems from theory of channel coding:
 • The amount of information I (in bits or nats) that is transmitted from a sender to a receiver depends on the actual probability of the actual incident/event

$$I(x) = \log_a \left(\frac{1}{p_x} \right) = \log_a 1 - \log_a p_x = -\log_a p(x)$$

• Example #1: two events A and B have a probability of 0.75 and 0.25; then the information that A has happened is $-\log_2(0.75) = 0.41$ (and for B it is 2)

• Example #2: A and B are equally likely, i.e., 0.5 each; then the information about which of them has happened is $-\log_2(0.5) = 1$

• If we use base 2 it tells us how much uncertainty is cut off by half!

• For simplification we use nats as $\log_2 x = \log x / \log 2$ (log 2 is constant)
Primer: KL-Divergence

• The **entropy** (of a probability distribution) is given by:

\[H(p) = - \sum_i p_i \log(p_i) \]

• It measures the average amount of information from one sample drawn from the underlying probability distribution \(p \)
 → it measures how unpredictable \(p \) is
 → defines the lower bound of the optimal bit-encoding

• As usual, we can also write \(H(p) \) in its expectation and draw \(x \) from \(p \):

\[H(p) = \mathbb{E}_{x \sim p} [-\log p(x)] \]
Primer: KL-Divergence

• The cross-entropy defines the average number of bits to identify a sampled event if it is encoded using q rather than p:

$$H(p, q) = -\sum_i p_i \log_2 (q_i)$$

• tells us the difference about the true probability distribution p and the predicted probability distribution q (given the encoding)

• If p and q are equal, then the cross-entropy and the entropy are equal

• As before, we can write $H(p, q)$ in its expectation:

$$H(p, q) = \mathbb{E}_{x \sim p} [-\log q(x)]$$

from https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained
Primer: KL-Divergence

• KL-Divergence tells us how much far away the cross-entropy is from the entropy (note that $H(p, q) \geq H(p)$):

$$D_{KL}(p \| q) = H(p, q) - H(p)$$

• Measure of dissimilarity between two probability distributions P and Q:

$$D_{KL}(p \| q) = \mathbb{E}_{x \sim p}[-\log q(x)] - \mathbb{E}_{x \sim p}[-\log p(x)]$$

$$= \mathbb{E}_{x \sim p}[-\log q(x) - (-\log p(x))]$$

$$= \mathbb{E}_{x \sim p}[-\log q(x) + \log p(x)]$$

$$= \mathbb{E}_{x \sim p}[\log p(x) - \log q(x)] = \mathbb{E}_{x \sim p}\left[\log \frac{p(x)}{q(x)}\right]$$

$$D_{KL}(p \| q) = \sum_i p(i) \log \frac{p(i)}{q(i)} \quad \text{and} \quad D_{KL}(p \| q) = \int P(x) \log \frac{p(x)}{q(x)} \, dx$$

• Note: KL-Divergence is asymmetric and hence no distance metric!

for more information see also https://www.youtube.com/watch?v=ErfhEcEV1O8 and https://medium.com/activating-robotic-minds/demystifying-kl-divergence-7eb4317ee68
→ back to where we came from…
Trust-Region Policy Optimization (TRPO)

• If we want to optimize $L(\theta_{\text{new}})$ instead of $\eta(\theta_{\text{new}})$ … with a guarantee of monotonic improvement on $\eta(\theta_{\text{new}})$, … … we need a bound on $L(\theta_{\text{new}})$.

• It can be proven that the following bound holds1,2:

$$
\eta(\pi_{\text{new}}) \geq L(\pi_{\text{new}}) - C \cdot D_{KL}^{\text{max}}(\pi_{\text{old}}, \pi_{\text{new}}), \text{ where } C = \frac{4\varepsilon \gamma}{(1-\gamma)^2}
$$

Trust-Region Policy Optimization (TRPO)

- A monotonically increasing policy can be defined by (minorization-maximization algorithm):

\[
\pi = \arg \max_{\pi} [L(\pi_{new}) - C \cdot D_{KL}^{max}(\pi_{old}, \pi_{new})], \text{ where } C = \frac{4\epsilon\gamma}{(1 - \gamma)^2}
\]

Hard to tune → in practice only small steps
Trust-Region Policy Optimization (TRPO)

• A monotonically increasing policy can be defined by (minorization-maximization algorithm):

$$\pi = \arg \max_{\pi} [L(\pi_{\text{new}}) - C \cdot D_{KL}^{\text{max}}(\pi_{\text{old}}, \pi_{\text{new}})], \text{ where } C = \frac{4\varepsilon\gamma}{(1-\gamma)^2}$$

Side-note:

• A constraint on the KL-divergence between new and old policy (i.e., a trust region constraint) allows larger step sizes while being mathematically equivalent:

$$\pi = \arg \max_{\pi} L_{\pi_{\text{old}}}, \text{ such that } D_{KL}^{\text{max}}(\pi_{\text{old}}, \pi) \leq \delta$$

• Approximation with L is accurate within δ

\rightarrow here, monotonic improvement guaranteed

Trust region $\rightarrow \pi_{\theta_{\text{new}}}(s, a)$ does not change too much
Trust-Region Policy Optimization (TRPO)

- Solving the KL-penalized problem (btw: directly over θ not π_θ)

$$\arg\max_\theta [L(\tilde{\theta}) - C \cdot D_{KL}^{\text{max}}(\theta, \theta_{old})]$$

- Use mean KL-divergence instead of max:

$$\arg\max_\theta [L(\tilde{\theta}) - C \cdot \overline{D_{KL}}(\theta, \theta_{old})]$$

\[\text{linear approximation of } L \quad \text{and} \quad \text{quadratic approximation of KL} \]

$$\arg\max_\theta \left[\frac{\partial}{\partial \theta} L(\theta) \bigg|_{\theta=\theta_{old}} \cdot (\theta - \theta_{old}) - \frac{C}{2} (\theta - \theta_{old})^T \cdot \frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta, \theta_{old}) \bigg|_{\theta=\theta_{old}} \cdot (\theta - \theta_{old}) \right]$$

$$\arg\max_\theta \left[g \cdot (\theta - \theta_{old}) - \frac{C}{2} (\theta - \theta_{old})^T F(\theta - \theta_{old}) \right]$$

\[g = \frac{\partial}{\partial \theta} L(\theta) \bigg|_{\theta=\theta_{old}} \quad F = \frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta, \theta_{old}) \bigg|_{\theta=\theta_{old}} \]
Trust-Region Policy Optimization (TRPO)

• Derive with respect to θ and set to 0:

\[
0 = \frac{\partial}{\partial \theta} \left[g \cdot (\theta - \theta_{old}) - \frac{c}{2} (\theta - \theta_{old})^T F (\theta - \theta_{old}) \right]
\]

\[
0 = 1 \cdot \left[g - \frac{c}{2} (\theta - \theta_{old})^T F \right] + (\theta - \theta_{old}) \left(-\frac{c}{2} F \right)
\]

\[
g - \frac{c}{2} (\theta - \theta_{old})^T F = \frac{c}{2} (\theta - \theta_{old}) F
\]

\[
F^{-1} g - \frac{c}{2} (\theta - \theta_{old})^T = \frac{c}{2} (\theta - \theta_{old})
\]

\[
F^{-1} g = c (\theta - \theta_{old})
\]

\[
\frac{1}{c} F^{-1} g = \theta - \theta_{old}
\]

• Solution: iterative optimization with Newton’s method:

\[
\theta_{new} = \theta_{old} + \frac{1}{c} H^{-1} g
\]
Trust-Region Policy Optimization (TRPO)

• The update step

\[\theta_{\text{new}} = \theta_{\text{old}} + \frac{1}{c} H^{-1} g \]

involves computing the inverse of the Hessian
\(\rightarrow \) too expensive for large \(|\theta|\)

• Conjugate Gradient (CG) computes \(F^{-1} g \)
 approximately without forming \(F \) explicitly
 • CG solves \(x = A^{-1} b \) without explicitely forming \(A \)
 • After \(k \) iterations, CG has minimized \(\frac{1}{2} x^T A x - b x \)
Trust-Region Policy Optimization (TRPO)

- Unconstrained problem: \(\operatorname{arg\ max}_\theta L(\theta) - C \cdot D_{KL}(\theta_{old}, \theta) \)

- Constrained problem: \(\operatorname{arg\ max}_\theta L(\theta) \) subject to \(C \cdot D_{KL}(\theta, \theta_{old}) \leq \delta \)
 - \(\delta \) is a hyper-parameter, remains fixed over the whole learning process

- Solve constrained quadratic problem: compute \(F^{-1}g \) and then rescale step to get correct KL:
 1. \(\max_\theta g \cdot (\theta - \theta_{old}) \) subject to \(\frac{1}{2} (\theta - \theta_{old})^T F (\theta - \theta_{old}) \leq \delta \)
 2. Lagrangian: \(\mathcal{L}(\theta, \lambda) = g \cdot (\theta - \theta_{old}) - \frac{c}{2} [(\theta - \theta_{old})^T F (\theta - \theta_{old}) - \delta] \)
 3. Differentiate with respect to \(\theta \) and get \(\theta - \theta_{old} = \frac{1}{c} F^{-1} g \)
 4. We want \(\frac{1}{2} s^T F s = \delta \)
 5. Given candidate step \(s_{\text{unscaled}} \) rescale \(s = \sqrt{\frac{2\delta}{s_{\text{unscaled}}^T F s_{\text{unscaled}}}} \cdot s_{\text{unscaled}} \)
Trust-Region Policy Optimization (TRPO)

Algorithm 1 Trust Region Policy Optimization

1. **Input**: initial policy parameters θ_0, initial value function parameters ϕ_0, initial value function parameters ϕ_0.
2. **Hyperparameters**: KL-divergence limit δ, backtracking coefficient α, maximum number of backtracking steps K.
3. **for** $k = 0, 1, 2, \ldots$ **do**
4. Collect set of trajectories $D_k = \{\tau_i\}$ by running policy $\tau_k = \pi(\theta_k)$ in the environment.
5. Compute rewards-to-go R_k.
6. Compute advantage estimates, A_k (using any method of advantage estimation) based on the current value function V_{ϕ_k}.
7. Estimate policy gradient as
 \[
 \hat{g}_k = \frac{1}{|D_k|} \sum_{i \in D_k} \sum_{t=0}^T \nabla_{\theta} \log \pi_\theta(a_t|s_t)|_{\theta_k} A_k.
 \]
8. Use the conjugate gradient algorithm to compute
 \[
 \hat{x}_k \approx H_k^{-1} \hat{g}_k,
 \]
 where H_k is the Hessian of the sample average KL-divergence.
9. Update the policy by backtracking line search with
 \[
 \theta_{k+1} = \theta_k + \alpha \sum_{j=1}^J \frac{2\delta}{x_j^T H_k x_j} \hat{x}_k,
 \]
 where $j \in \{0, 1, 2, \ldots K\}$ is the smallest value which improves the sample loss and satisfies the sample KL-divergence constraint.
10. Fit value function by regression on mean-squared error:
 \[
 \phi_{k+1} = \arg \min_{\phi} \frac{1}{|D_k|} \sum_{i \in D_k} \sum_{t=0}^T \left(V_{\phi}(s_t) - R_k \right)^2,
 \]
 typically via some gradient descent algorithm.
11. **end for**
Trust-Region Policy Optimization (TRPO)

Intuition/Summary

• We approximate the expected return function locally around the current policy.
 • The accuracy decreases when the new policy and the current policy diverge from each other.

• But we can establish an upper bound for the error.
 • Therefore, we can guarantee a policy improvement if we optimize the local approximation within a trusted region.
 • Outside this region, the bet is off.

• Even it may have a better-calculated value, its range of error fails the improvement guarantee. With such a guarantee inside the trust region, we can locate the optimal policy iteratively. So even it takes a while to prove it mathematically, the reasoning is simple.
Trust-Region Policy Optimization (TRPO)

• Shortcomings:
 • TRPO minimizes a quadratic equation to approximate the inverse of the Fisher Information Matrix (FIM), i.e., the Hessian
 • To do this for every policy is expensive
 • It requires a large batch of rollouts to approximate it correctly
 • Less sample-efficient to other PG methods when trained with first-order methods such as Adam

→ These become a significant issue for large/deep networks!

• And: Yes, TRPO is a complex algorithm that is hard to understand & implement
References

• Pascal Poupart: CS885 Lecture 14c: Trust Region Methods
• Sergey Levine: CS285: Advanced Policy Gradients

Further reading:
• TRPO (Trust Region Policy Optimization) : In depth Research Paper Review: https://www.youtube.com/watch?v=CKaN5PgkSBc