
Reinforcement Learning @FAU
Summer Term 2022

Sebastian Rietsch, Christopher Mutschler
2022-07-21 – Due 2022-07-29

Exercise 12

Time to Explore: DQN, RND and ICM

As you have learned from the lecture, for sparse reward problems where the agent has to thoroughly explore
the state space to even get a glimpse of what his task is (i.e. the agents only gets a reward when arriving
at a goal state), exploration techniques like ε-greedy are not enough to ”stumble over” the desired goal
conditions.

This is already the case for relatively simple problems like the MountainCar1 environment. In this environ-
ment, the agent has to strategically accelerate a car back and forth to escape from a mountain valley and
arrive at the top of the mountain located at the right (depicted in Figure 1). In the default implementation,
the reward function is Ra(s, s

′
) = −1 for every step until the episode is finished, i.e. after a maximum of

200 time steps or the agent arrived at the goal.

Task

1. Uncomment the line env = gym.make(’MountainCar-v0’) inside dqn.py to run DQN on the Moun-
tainCar setup described above. You will see that DQN is able to learn an escape strategy quite
quickly. Try to explain why this might be the reason. Think about how the value estimates of
visited vs. unvisited states change over the course of training.

As it turns out, using value-function approximators like DQN, this reward definition is not as sparse at
it seems on first impression (we will further clarify this in next week’s exercise discussion). To convert
the MountainCar environment into a truly challenging sparse-reward problem, we wrote an environment
wrapper inside env.py and changed the reward function to:

Ra(s, s
′

) = {
200.0, s′ is a goal-state

0.0, otherwise.
(1)

Task

2. Revert the changes you did and ensure that MountainCarCustomized is used as the training envi-
ronment. Rerun vanilla DQN and verify that it struggles to deal with the modified problem. (Very
rarely it might still solve the environment, but very unreliably... ,)

Now, let’s turn to the main part of this week’s exercise. Your task is to implement Exploration by random
network distillation (RND)2 and Curiosity-driven Exploration by Self-supervised Prediction (ICM)3, two
state of the art exploration methods with not too much complexity. In the following, we give a rough
sketch of the algorithms and provide more detailed, textual pseudo-code inside the code skeletons. We also
advise you to have a quick look at the respective papers for more information.

In short, for both methods the goal is to have some metric that encapsulates how often the agent has already
visited a certain state. Whereas in discrete state spaces we could just keep count of state visitations inside
a table, for continuous state spaces this is harder to integrate.

RND The idea of RND is to use a randomly initialized, fixed target network and a second predictor
network, where the predictor learns to predict the outputs of the target network based on states as input.
Even though the target network outputs are random, they are deterministic (i.e. stay the same) for every
state input. This way, the more often the agent has already visited a certain state, the better the predictor
will be able to approximate the target network outputs. In RND, the intrinsic reward is then defined as
the error between the prediction and the target outputs.

1https://www.gymlibrary.ml/environments/classic_control/mountain_car/
2https://openreview.net/forum?id=H1lJJnR5Ym
3https://pathak22.github.io/noreward-rl/

1

https://www.gymlibrary.ml/environments/classic_control/mountain_car/
https://openreview.net/forum?id=H1lJJnR5Ym
https://pathak22.github.io/noreward-rl/


Reinforcement Learning @FAU
Summer Term 2022

Sebastian Rietsch, Christopher Mutschler
2022-07-21 – Due 2022-07-29

Figure 1: The MountainCar-v0 OpenAI gym environment.

(a) Vanilla DQN (b) RND (c) ICM

Figure 2: Example result plots for the current exercise.

ICM The goal of ICM is to quantify the novelty of states through a forward model, i.e. based on
the current observation and the performed action, ICM predicts the next observation and uses the error
between the actual next observation, and the prediction as intrinsic exploration reward. Because learning
a forward model inside the observation space has many drawbacks (think about visual observations), ICM
performs the forward prediction inside a learned feature space. To do this, a feature network encodes the
observations into a feature space. A second network, the so-called inverse-dynamics network, is trained
to predict the feature encoding of the next observation based on the feature encoding of the current
observation and the performed action. This way, only action-relevant features are learnt and stochastic
effects outside the agent’s control (think about noisy-TV) are filtered out. Finally, the forward-dynamics
network predicts the feature vector of the next observation based on the encoding of the current observation
and the performed action. Similar to RND, we use the error as intrinsic reward.

Programming Tasks

3. Implement RND and ICM inside exploration.py. You will have to implement the calculate_loss(...)
and calculate_reward functions of both exploration modules.

4. Run your implementation and verify that they are working. For reference, Figure 2 displays result
plots of our solution.

Some Notes

• It can happen that sometimes the methods do not converge. This is due to the fact that these
methods are highly dependent on good hyper-parameters. For example, if the RND predictor is
too powerful and learns to fast, the intrinsic reward becomes non-informative very quickly. This
is equally true for ICM. We tried our best to find reliable hyperparameters, but RL can be tricky
sometimes. ,

• If your implementation arrives at the goal sometimes, it is probably correct.

• To highlight the exploration capabilities of RND and ICM, we only use ε-greedy for vanilla DQN.

2


