
Reinforcement Learning @FAU
Summer Term 2022

Luca Reeb, Sebastian Rietsch, Christopher Mutschler
2021-05-19 – Due 2021-05-26

Exercise 4

Temporal Difference Learning

In last weeks exercise you implemented a simple gridworld MDP that adheres to the OpenAI Gym interface.
This week we will put your implementation into practice and try to solve it using SARSA and Q-Learning.

1 SARSA and Q-Learning

You can find the code skeleton inside the sarsa_q_learning.py file. We provide to you a sample solution
of the last exercise inside gym_gridworld.py. Visualization helpers can find inside helper.py. There you
find three classes:

• SARSAQBaseAgent: The base class, which has the __init__ constructor and a action function, which
returns the ε-greedy action for a state s. The SARSA and Q-Learning agents are extensions of this
class.

• SARSAAgent and QLearningAgent: The SARSA and Q-Learning agent classes with methods learn
and update_Q.

Remark: You are free to implement the inner workings of your agents as you wish. For the visualization
tools to work you will however have to work with a Q-value member variable Q, which is a numpy array of
shape [grid height, grid width, num actions]. Alternatively, it should be easy to adjust the visualization
helper functions as needed.

Programming Tasks:

1. ε-greedy actions: Implement the action function which should return a random action with a
probability of ε and the greedy action w.r.t the current Q-value estimates of state s with a probability
of 1 − ε.

2. SARSA:

• Q-value update: Implement the Q-value update rule of SARSA for a tuple (s, a, r, s′, a′)
inside update_Q d.

• Learning loop: Implement the training loop of the SARSA agent, which should step through
the environment for n_timesteps steps.

3. Q-Learning: Repeat the same steps for the Q-Learning agents.

Test your implementation and verify that it’s working correctly. To make things easier you can start testing
on a simpler gridworld environment by replacing the map of your gridworld with a simpler one. You can
see a sample results in Figure 1.

2 Cliffwalking

In order to highlight the difference between SARSA and Q-Learning, try to replicate the famous Cliff
Walking environment using your (or our) gridworld implementation (Figure 2). As our implementation
only supports square grid shapes, we replicated this environment inside a 4 × 4 grid with only two cliff
cells between start and finish in our reference implementation. This turned out to work well enough.

Train a SARSA and Q-Learning agent on this environment. What is the explanation for the difference in
learnt policies and Q-functions? How does this relate to SARSA being considered an on-policy method
and Q-Learning being an off-policy method?

1



Reinforcement Learning @FAU
Summer Term 2022

Luca Reeb, Sebastian Rietsch, Christopher Mutschler
2021-05-19 – Due 2021-05-26

Figure 1: Sample output for a correctly implemented Q-Learning agent on the gridworld environment
(200k training steps, ε = 0.4, γ = 0.9). States (1, 2) and (2, 2) should actually have a 50 − 50 policy for
actions down and right, which they don’t have due to rounding error. Results can also be quite sensitive
to hyper-parameters and a correct implementation can still lead to confusing results sometimes.

Figure 2: The Cliff Walking environment.

2


