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When importance sampling is done as a simple average in this way it is called ordinary
importance sampling.

An important alternative is weighted importance sampling, which uses a weighted
average, defined as
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or zero if the denominator is zero. To understand these two varieties of importance
sampling, consider the estimates of their first-visit methods after observing a single return
from state s. In the weighted-average estimate, the ratio ⇢t:T (t)�1 for the single return
cancels in the numerator and denominator, so that the estimate is equal to the observed
return independent of the ratio (assuming the ratio is nonzero). Given that this return
was the only one observed, this is a reasonable estimate, but its expectation is vb(s) rather
than v⇡(s), and in this statistical sense it is biased. In contrast, the first-visit version
of the ordinary importance-sampling estimator (5.5) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the
trajectory observed is ten times as likely under the target policy as under the behavior
policy. In this case the ordinary importance-sampling estimate would be ten times the
observed return. That is, it would be quite far from the observed return even though the
episode’s trajectory is considered very representative of the target policy.

Formally, the di↵erence between the first-visit methods of the two kinds of importance
sampling is expressed in their biases and variances. Ordinary importance sampling is
unbiased whereas weighted importance sampling is biased (though the bias converges
asymptotically to zero). On the other hand, the variance of ordinary importance sampling
is in general unbounded because the variance of the ratios can be unbounded, whereas in
the weighted estimator the largest weight on any single return is one. In fact, assuming
bounded returns, the variance of the weighted importance-sampling estimator converges
to zero even if the variance of the ratios themselves is infinite (Precup, Sutton, and
Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower
variance and is strongly preferred. Nevertheless, we will not totally abandon ordinary
importance sampling as it is easier to extend to the approximate methods using function
approximation that we explore in the second part of this book.

The every-visit methods for ordinary and weighed importance sampling are both biased,
though, again, the bias falls asymptotically to zero as the number of samples increases.
In practice, every-visit methods are often preferred because they remove the need to keep
track of which states have been visited and because they are much easier to extend to
approximations. A complete every-visit MC algorithm for o↵-policy policy evaluation
using weighted importance sampling is given in the next section on page 110.

Exercise 5.5 Consider an MDP with a single nonterminal state and a single action
that transitions back to the nonterminal state with probability p and transitions to the
terminal state with probability 1�p. Let the reward be +1 on all transitions, and let
� =1. Suppose you observe one episode that lasts 10 steps, with a return of 10. What
are the first-visit and every-visit estimators of the value of the nonterminal state? !
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To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there wecomputedvalue functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, Þrst we consider the prediction problem (the
computation of v! and q! for a Þxed arbitrary policy ! ) then policy improvement, and,
Þnally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected returnÑexpected cumulative
future discounted rewardÑstarting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimatev! (s), the value of a state s under policy ! ,
given a set of episodes obtained by following! and passing throughs. Each occurrence
of state s in an episode is called avisit to s. Of course,s may be visited multiple times
in the same episode; let us call the Þrst time it is visited in an episode theÞrst visit
to s. The Þrst-visit MC method estimatesv! (s) as the average of the returns following
Þrst visits to s, whereas theevery-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di! erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check forSt having occurred earlier in the episode.

First-visit MC prediction, for estimating V ! v!

Input: a policy ! to be evaluated
Initialize:

V (s) " R, arbitrarily, for all s " S
Returns (s) # an empty list, for all s " S

Loop forever (for each episode):
Generate an episode following! : S0, A0, R1, S1, A1, R2, . . . , ST ! 1, AT ! 1, RT

G # 0
Loop for each step of episode,t = T $ 1, T $ 2, . . . , 0:

G # " G + Rt +1

Unless St appears in S0, S1, . . . , St ! 1 :
Append G to Returns (St )
V (St ) # average(Returns (St ))
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Monte Carlo vs. TD
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Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)
and TD methods (right).

estimate that it will take another 25 minutes to get home, for a total of 50 minutes. As
you wait in tra ! c, you already know that your initial estimate of 30 minutes was too
optimistic. Must you wait until you get home before increasing your estimate for the
initial state? According to the Monte Carlo approach you must, because you donÕt yet
know the true return.

According to a TD approach, on the other hand, you would learn immediately, shifting
your initial estimate from 30 minutes toward 50. In fact, each estimate would be shifted
toward the estimate that immediately follows it. Returning to our Þrst day of driving,
Figure 6.1 (right) shows the changes in the predictions recommended by the TD rule
(6.2) (these are the changes made by the rule if! = 1). Each error is proportional to the
change over time of the prediction, that is, to the temporal di! erencesin predictions.

Besides giving you something to do while waiting in tra! c, there are several computa-
tional reasons why it is advantageous to learn based on your current predictions rather
than waiting until termination when you know the actual return. We brießy discuss some
of these in the next section.

Exercise 6.2 This is an exercise to help develop your intuition about why TD methods
are often more e! cient than Monte Carlo methods. Consider the driving home example
and how it is addressed by TD and Monte Carlo methods. Can you imagine a scenario
in which a TD update would be better on average than a Monte Carlo update? Give
an example scenarioÑa description of past experience and a current stateÑin which
you would expect the TD update to be better. HereÕs a hint: Suppose you have lots of
experience driving home from work. Then you move to a new building and a new parking
lot (but you still enter the highway at the same place). Now you are starting to learn
predictions for the new building. Can you see why TD updates are likely to be much
better, at least initially, in this case? Might the same sort of thing happen in the original
scenario? !


