
Reinforcement Learning

—

Exercise 1: MDPs & Dynamic Programming
Sebastian Rietsch



Opening Remarks
Hello There!

Slide 2

§ Will take turns in holding the exercise session
§ For specific question, please write us an E-Mail or (better) ask the question inside the StudOn forum

§ Will try to answer your questions together with Christopher Mutschler there
§ You will find exercise sheet and code skeleton here: https://cmutschler.de/rl



Overview
Exercise Content

Slide 3



Basics: Reinforcement Learning

Slide 4



Intro to Reinforcement Learning
The RL paradigm

5

”All goals can be described by the
maximization of expected cumulative reward.”



Markov Decision Processes
Recap

§ Agent learns by interacting with an environment over many time-steps:
§ Markov Decision Process (MDP) is a tool to formulate RL problems

§ Description of an MDP 𝒮,𝒜,𝒫,ℛ, 𝛾

§ If the interaction does stop at some point in time, then we have an episodic RL problem

6

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

At each step t, the agent:
• is in a state S!
• performs action A!
• receives reward R!

At each step t, the environment:
• receives action A! from the agent
• provides reward R!
• moves to state S!"# with probability P$,&(s!"#)
• increments time t ← t + 1

𝛾 is the so-called discount factor



Markov Decision Processes
Recap

§ We need a controller that helps us select the actions to maximize expected cumulative reward
§ So-called: Expected return or value

§ A policy 𝜋 represents this controller:
§ 𝜋 determines the agent’s behavior, i.e., its way of acting
§ 𝜋 is a mapping from state space 𝒮 to action space 𝒜, i.e., 𝜋 ∶ 𝒮 ↦ 𝒜
§ Two types of policies:

§ Deterministic policy: 𝑎 = 𝜋(𝑠).
§ Stochastic policy: 𝜋 𝑎 | 𝑠 = ℙ 𝐴' = 𝑎 𝑆'= 𝑠]

§ Goal: find a policy that maximizes the expected return!
§ We denote the optimal policy 𝜋 for a given MDP as 𝜋∗

7



Markov Decision Processes
The Value Function

(State-)Value function

𝑉) 𝑠 = 𝔼) 𝐺' | 𝑠' = 𝑠 = 𝔼) @
'*+

,

𝛾'𝑟' | 𝑠' = 𝑠

§ ”Expected return following policy 𝜋 from state 𝑠”

Action-value function/Q-function

𝑄) 𝑠, 𝑎 = 𝔼) 𝐺' | 𝑠' = 𝑠, 𝑎' = 𝑎 = 𝔼) @
'*+

,

𝛾'𝑟' | 𝑠' = 𝑠, 𝑎' = 𝑎

§ “Expected return of doing action 𝑎 in state 𝑠 and following policy 𝜋 afterwards”

8



Exercise Sheet 1
Discussion

Slide 9



Dynamic Programming

Slide 10



Dynamic Programming
Introduction

§ Limited utility in practical reinforcement learning, but theoretical importance
§ Why?

§ Idea: Use value functions to organize and structure the search for good policies
§ We can easily obtain optimal policies once we have found the optimal value function (and vice versa)
§ Founded on the Bellman optimality equation(s)

Bellman-Optimality Equation
𝑉)∗ 𝑠 = max

-
𝑄)∗ 𝑠, 𝑎 = max

-
𝔼)∗[𝑟' + 𝛾𝑉)∗ 𝑠 ]

Four key concepts
§ Policy Evaluation
§ Policy Improvement
§ (Generalized) Policy Iteration
§ Value Iteration

Slide 11

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



Policy Evaluation

§ Given a policy 𝜋 and the environment dynamics, we can easily compute the value of state:

𝑉) 𝑠 = 𝔼) 𝐺' | 𝑠' = 𝑠 = … = @
-

𝜋 𝑎 𝑠 @
." /

𝑃 𝑠0, 𝑟 𝑠, 𝑎)[𝑟 + 𝛾𝑉) 𝑠′ ]

§ System of #𝑠𝑡𝑎𝑡𝑒𝑠 linear equations with #𝑠𝑡𝑎𝑡𝑒𝑠 unknowns
§ Can be solved straightforwardly

§ For our purposes, we solve it iteratively

Slide 12



Policy Improvement

§ Given a policy 𝜋 and its value function (and the environement dynamics), greedily take the action that looks good in the 
short term 

𝜋0 𝑠 = 𝑎𝑟𝑔max
-
𝑄) (𝑠, 𝑎)

§ Suppose 𝜋’ = 𝜋, then 𝜋′ fullfils the Bellman optimality equation in all states
§ Therefore: We found the optimal policy

Slide 13

How to be optimal:
1. Take correct first 

action
2. Keep being optimal

http://ai.berkeley.edu/lecture_slides.html

http://ai.berkeley.edu/lecture_slides.html


Policy Iteration

Slide 14



Value Iteration

Slide 15

§ Drawback of Policy Iteration: We must do a full Policy Evaluation procedure for every step, which is costly!
§ We can also truncate this:

§ If we stop the policy evaluation after just one sweep, this is called Value Iteration
§ Surprisingly, this corresponds to translating the Bellman optimality equation into an update rule
§ We can also drop the policy improvement step because we are only interested in the final policy



Dynamic Programming
Summary

§ Policy Evaluation
§ Given policy 𝜋, compute its (approximate) value function for (part of) the state space

§ Policy Improvement
§ Given value function 𝑉) 𝑠 , extract the greedy policy 𝜋0with 𝑉)" 𝑠 ≥ 𝑉) 𝑠

§ (Generalized) Policy Iteration
§ Repeat until convergence (policy doesn’t change after improvement, i.e., Bellman optimality equation holds)

§ Do 𝑥 steps of Policy Evaluation
§ Do Policy Improvement

§ Value Iteration
§ Special case of Policy Iteration with 1 Policy Evaluation step
§ Converged when change in value estimates smaller than some threshold 
§ Policy Improvement step only as the last step

Slide 16



Thank you for your attention!


