

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 1: MDPs & Dynamic Programming

Sebastian Rietsch

Opening Remarks Hello There!

Sebastian sebastian.rietsch@iis.fraunhofer.de

Nico nico.meyer@iis.fraunhofer.de

- Will take turns in holding the exercise session
- For specific question, please write us an E-Mail or (better) ask the question inside the StudOn forum
 - Will try to answer your questions together with Christopher Mutschler there
- You will find exercise sheet and code skeleton here: https://cmutschler.de/rl

Overview Exercise Content

Week	Date	Торіс	Due Date (discussion of solution on)
1			
2	28.04.	MDPs	28.04.
	28.04.	Dynamic Programming	05.05.
3	05.05.	OpenAl Gym, TD-Learning	12.05.
4	12.05.	TD-Control	19.05.
5	19.05.	PyTorch, DQNs	02.06.
6	26.05.		
7	02.06.	VPG, A2C, PPO	16.06.
8	09.06.		
9	16.06.	MCTS	23.06.
10	23.06.	MPC, CEM	30.06.
11	30.06.	Multi-armed Bandits	07.07.
12	07.07.	RND/ICM	14.07.
13	14.07.	BCQ	19.07. (lecture slot)
14			

Basics: Reinforcement Learning

Intro to Reinforcement Learning

The RL paradigm

"All goals can be described by the maximization of expected cumulative reward."

Markov Decision Processes

Recap

- Agent learns by interacting with an environment over many time-steps:
- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of an MDP (S, A, P, R, γ)

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

At each step t, the agent:

- is in a state ${\rm S}_{\rm t}$
- performs action \boldsymbol{A}_t
- receives reward $\ensuremath{\mathsf{R}}_t$

At each step t, the environment:

- receives action A_t from the agent
- provides reward R_t
- moves to state S_{t+1} with probability $P_{s,a}(s_{t+1})$
- increments time $t \leftarrow t + 1$

 $\boldsymbol{\gamma}$ is the so-called discount factor

• If the interaction does stop at some point in time, then we have an *episodic* RL problem

Markov Decision Processes

Recap

- We need a controller that helps us select the actions to maximize expected cumulative reward
 - So-called: Expected return or value
- A policy π represents this controller:
 - π determines the agent's behavior, i.e., its way of acting
 - π is a mapping from state space S to action space A, i.e., $\pi : S \mapsto A$
 - Two types of policies:
 - Deterministic policy: $a = \pi(s)$.
 - Stochastic policy: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$
- **Goal**: find a policy that maximizes the expected return!
 - We denote the optimal policy π for a given MDP as π^*

Markov Decision Processes

The Value Function

(State-)Value function

$$\mathcal{V}_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_t = s\right]$$

• "Expected return following policy π from state s"

Action-value function/Q-function

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid s_t = s, a_t = a] = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_t = s, a_t = a\right]$$

• "Expected return of doing action a in state s and following policy π afterwards"

Exercise Sheet 1

Discussion

Dynamic Programming

Dynamic Programming

Introduction

- Limited utility in practical reinforcement learning, but theoretical importance
 - Why?
- Idea: Use value functions to organize and structure the search for good policies
 - We can easily obtain optimal policies once we have found the optimal value function (and vice versa)
 - Founded on the Bellman optimality equation(s)

Bellman-Optimality Equation

$$V_{\pi^*}(s) = \max_{a} Q_{\pi^*}(s, a) = \max_{a} \mathbb{E}_{\pi^*}[r_t + \gamma V_{\pi^*}(s)]$$

Four key concepts

- Policy Evaluation
- Policy Improvement
- (Generalized) Policy Iteration
- Value Iteration

Policy Evaluation

• Given a policy π and the environment dynamics, we can easily compute the value of state:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] = \dots = \sum_{a} \pi(a|s) \sum_{s' \mid r} P(s', r \mid s, a)[r + \gamma V_{\pi}(s')]$$

- System of *#states* linear equations with *#states* unknowns
 - Can be solved straightforwardly
 - For our purposes, we solve it iteratively

```
Iterative Policy Evaluation, for estimating V \approx v_{\pi}

Input \pi, the policy to be evaluated

Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation

Initialize V(s) arbitrarily, for s \in S, and V(terminal) to 0

Loop:

\Delta \leftarrow 0

Loop for each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta
```


Policy Improvement

• Given a policy π and its value function (and the environement dynamics), greedily take the action that looks good in the short term

$$\pi'(s) = \arg\max_{a} Q_{\pi}(s, a)$$

- Suppose $\pi' = \pi$, then π' fullfils the Bellman optimality equation in all states
 - Therefore: We found the optimal policy

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

```
1. Initialization
    V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in S; V(terminal) \doteq 0
2. Policy Evaluation
   Loop:
         \Delta \leftarrow 0
        Loop for each s \in S:
             v \leftarrow V(s)
              V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \left[r + \gamma V(s')\right]
              \Delta \leftarrow \max(\Delta, |v - V(s)|)
   until \Delta < \theta (a small positive number determining the accuracy of estimation)
3. Policy Improvement
   policy-stable \leftarrow true
   For each s \in S:
         old-action \leftarrow \pi(s)
        \pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
        If old-action \neq \pi(s), then policy-stable \leftarrow false
   If policy-stable, then stop and return V \approx v_* and \pi \approx \pi_*; else go to 2
```


Value Iteration

- Drawback of Policy Iteration: We must do a full Policy Evaluation procedure for every step, which is costly!
- We can also truncate this:
 - If we stop the policy evaluation after just one sweep, this is called Value Iteration
 - Surprisingly, this corresponds to translating the Bellman optimality equation into an update rule
 - We can also drop the policy improvement step because we are only interested in the final policy

```
Iterative Policy Evaluation, for estimating V \approx v_{\pi}

Input \pi, the policy to be evaluated

Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation

Initialize V(s) arbitrarily, for s \in S, and V(terminal) to 0

Loop:

\Delta \leftarrow 0

Loop for each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta
```


Dynamic Programming

Summary

- Policy Evaluation
 - Given policy π , compute its (approximate) value function for (part of) the state space
- Policy Improvement
 - Given value function $V_{\pi}(s)$, extract the greedy policy π' with $V_{\pi'}(s) \ge V_{\pi}(s)$
- (Generalized) Policy Iteration
 - Repeat until convergence (policy doesn't change after improvement, i.e., Bellman optimality equation holds)
 - Do x steps of Policy Evaluation
 - Do Policy Improvement
- Value Iteration
 - Special case of Policy Iteration with 1 Policy Evaluation step
 - Converged when change in value estimates smaller than some threshold
 - Policy Improvement step only as the last step

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!