Z Fraunhofer

IS

Fraunhofer-Institut flr Integrierte
Schaltungen 1IS

"

Sebastian Rietsch

Opening Remarks
Hello There!

Sebastian Nico
sebastian.rietsch@iis.fraunhofer.de nico.meyer@iis.fraunhofer.de

= Will take turns in holding the exercise session

= For specific question, please write us an E-Mail or (better) ask the question inside the StudOn forum
Will try to answer your questions together with Christopher Mutschler there

= You will find exercise sheet and code skeleton here: https://cmutschler.de/r|

\

Side 2 ~ Fraunhofer

s

Overview
Exercise Content

Slide 3

Week

10

L

12

13

Date

28.04.

28.04.

05.065.

12.05.

19.05.

26.05.

02.06.

09.06.

16.06.

23.06.

30.06.

07.07.

14.07.

Topic

MDPs

Dynamic Programming
OpenAl Gym, TD-Learning
TD-Control

PyTorch, DQNs

VPG, A2C, PPO

MCTS

MPC, CEM
Multi-armed Bandits
RND/ICM

BCQ

Due Date (discussion of solution on...)

28.04.
05.05.
12.05.
19.05.

02.06.

16.06.

23.06.
30.06.
07.07.
14.07.

19.07. (lecture slot)

~ Fraunhofer

s

Basics: Reinforcement Learning

Side 4 ~ Fraunhofer

s

Intro to Reinforcement Learning
The RL paradigm

"All goals can be described by the
maximization of expected cumulative reward.”

environment

agent

actions

, >

rewards
2 l)
observations
¢ PN

\

5 ~ Fraunhofer

s

Markov Decision Processes
Recap

= Agent learns by interacting with an environment over many time-steps:
= Markov Decision Process (MDP) is a tool to formulate RL problems

Description of an MDP (S, A, P, R,y) At each step t, the agent:

* isin astate S;
« performs action A;

>|= Agent I * receives reward R;
state| |reward action At each step t, the environment:
A, * receives action A from the agent

» provides reward R;

* moves to state S¢;; with probability P;,(s¢+1)

* incrementstimet «t+1

R

; S.. | Environment]4—

\

7
t+1

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

y is the so-called discount factor

= |f the interaction does stop at some point in time, then we have an episodic RL problem

\

6 ~ Fraunhofer

s

Markov Decision Processes
Recap

= We need a controller that helps us select the actions to maximize expected cumulative reward
So-called: Expected return or value

= A policy m represents this controller:
m determines the agent’s behavior, i.e., its way of acting
7 iS @ mapping from state space § to action space A, ie., m: § » A
Two types of policies:
Deterministic policy: a = m(s).
Stochastic policy: m(a | s) = P[A; = a| Sy = s]

= @Goal: find a policy that maximizes the expected return!
We denote the optimal policy = for a given MDP as *

\

; ~ Fraunhofer

s

Markov Decision Processes
The Value Function

(State-)Value function

Vn(s) = IEn[Gt | St = S] = En

(0)e]

t _
ZV rtlst_S]
t=0

= "Expected return following policy = from state s”

Action-value function/Q-function

Qr(s,a) = Eg[Ge | st =s,a, =a] = E4 [Z yirelse =s,a, = a]
t=0
= "Expected return of doing action a in state s and following policy m afterwards”

\

6 ~ Fraunhofer

s

Exercise Sheet 1
Discussion

Side 8 ~ Fraunhofer

s

Dynamic Programming

Side 10 ~ Fraunhofer

s

Dynamic Programming
Introduction

= Limited utility in practical reinforcement learning, but theoretical importance
Why?

= ldea: Use value functions to organize and structure the search for good policies
We can easily obtain optimal policies once we have found the optimal value function (and vice versa)
Founded on the Bellman optimality equation(s)

Bellman-Optimality Equation
Ve (s) = max Q-+ (s, @) = max Ep-[ry + y Vi (s)]

evaluation

Vs vy

Four key concepts

Policy Evaluation

Policy Improvement
(Generalized) Policy Iteration
Value Iteration

7~ greedy (V)

improvement

’U*, 7T*

Tr* < U*
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

=
Slide 11 % Fraunhofer

s

Policy Evaluation

= @Given a policy T and the environment dynamics, we can easily compute the value of state:

Ve(s) = ElGe | se =51 = .= Y m(als)) P(s',r | 5,@)[r + yVr(s")]

a
= System of #states linear equations with #states unknowns

Can be solved straightforwardly
For our purposes, we solve it iteratively

Iterative Policy Evaluation, for estimating V =~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V (s) arbitrarily, for s € 8, and V (terminal) to 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) < Yo m(als) Yoy . p(s',7]s,a) [r + 4V ()]
A +— max(A,|v —V(s)])
until A < 6

\

Slide 12 % Fraunhofer

s

Policy Improvement

Slide 13

Given a policy m and its value function (and the environement dynamics), greedily take the action that looks good in the

short term

n'(s) = arg max Q; (s,a)

Suppose ' = 7, then @’ fullfils the Bellman optimality equation in all states
Therefore: We found the optimal policy

How to be optimal:
) Take correct first

gep being optimal

http.'//ai.berkele v.edu/lecture slides.html

\

~ Fraunhofer

s

http://ai.berkeley.edu/lecture_slides.html

Policy Iteration

Slide 14

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ .,

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € 8; V (terminal) =0

. Policy Evaluation

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) + ZS,,rp(s’, r|s,m(s)) [r + ’yV(s’)]
A « max(A, v —V(s)])
until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement

policy-stable < true
For each s € &:
old-action < 7(s)
m(s) < argmax,), . p(s’,r]|s,a) [7" + 'yV(s’)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V =~ v, and 7 = m,; else go to 2

\

~ Fraunhofer

s

Value Iteration

= Drawback of Policy Iteration: \We must do a full Policy Evaluation procedure for every step, which is costly!

= We can also truncate this:
If we stop the policy evaluation after just one sweep, this is called Value Iteration
Surprisingly, this corresponds to translating the Bellman optimality equation into an update rule
We can also drop the policy improvement step because we are only interested in the final policy

Slide 15

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s) arbitrarily, for s € 8, and V (terminal) to 0

Loop:
A+0
Loop for each s € 8:
v« V(s)
V(s) X, 7(als) Sy, p(s's715,0) [r + 4V ()]
A < max(A, v —V(s)|)
until A < 6

= Fraunhofer

s

Dynamic Programming
Summary

= Policy Evaluation
Given policy T, compute its (approximate) value function for (part of) the state space
= Policy Improvement
Given value function V;(s), extract the greedy policy n'with Vs (s) = V;(s)
= (Generalized) Policy Iteration
Repeat until convergence (policy doesn’t change after improvement, i.e., Bellman optimality equation holds)
Do x steps of Policy Evaluation
Do Policy Improvement
= Value Iteration
Special case of Policy Iteration with 1 Policy Evaluation step
Converged when change in value estimates smaller than some threshold
Policy Improvement step only as the last step

\

Slide 16 % Fraunhofer

s

~ Fraunhofer

IS

Fraunhofer-Institut flr Integrierte
Schaltungen 1IS

