

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 9: MCTS + MBRL

22.06.2023

Sebastian Rietsch

Exercise Sheet 8 MCTS

MCTS (continued)

Monte Carlo Tree Search

- Heuristic search algorithm using random sampling for (deterministic) problems
 - In our setting: Nodes are states, edges are actions
- Play many rollouts from the root node
 - Selection: Select successive child nodes until a leaf node is reached
 - Expansion: Create a new child node
 - **Simulation:** Continue with (random) actions until the terminal state
 - Backpropagation: Update information in the nodes on the path traversed
- Balancing exploitation and exploration during expansion via UCT formula

$$a = argmax_i \frac{w_i}{n_i} + c_{\sqrt{\frac{\ln N_i}{n_i}}}$$

The Evolution of AlphaGo to muZero

https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules

AlphaGo

• AlphaGo defeated the Go champion Lee Sedol in a best-of-five tournament in 2016

- Algorithm outline
 - Training
 - A policy p(s|a) is trained to predict human expert moves in a data set of positions, refined via policy gradient through self-play, and training of value regressor on self-play data

Deployment

MCTS with policy and value network

AlphaGo – Training

AlphaGo – Influences on Search Complexity

AlphaZero: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

- Published one year after AlphaGo in 2017
- Achieved superhuman level of play in the games of Chess, shogi, and Go within 24 hours of training
- Main goal: Replace handcrafted knowledge and domain-specific augmentations
 - Also: Reduction to one neural network + MCTS already during training via self-play

AlphaZero

- One deep neural network $f_{\theta}(s) = (p, v)$ with
 - move probabilities p = Pr(a|s) and
 - value prediction v (win probability of the current player)
- "Tabula rasa" reinforcement learning
 - A policy plays against a past version of itself (self-play)
 - In each position, an MCTS search is executed
 - Guided by the neural network's move probabilities p^{\star}
 - More robust, sophisticated policy (tree-search informed by policy network's "best guess")
 - Network is updated towards MCTS move probabilities (policy head) and self-play winner outcome (value head)
 - "Policy iteration procedure"

"policy improvement"

"policy evaluation"

AlphaZero - Method

AlphaZero - Results

Figure 1: Training *AlphaZero* for 700,000 steps. Elo ratings were computed from evaluation games between different players when given one second per move. **a** Performance of *AlphaZero* in chess, compared to 2016 TCEC world-champion program *Stockfish*. **b** Performance of *AlphaZero* in shogi, compared to 2017 CSA world-champion program *Elmo*. **c** Performance of *AlphaZero* in Go, compared to *AlphaGo Lee* and *AlphaGo Zero* (20 block / 3 day) (29).

AlphaZero – Notes

- Loss function:
 - $l = (z v)^2 \pi^T \log(p) + c ||\theta||^2$

MSE Cross-entropy Weight regularization

- Neural network consists of
 - Single convolutional block + 19 or 39 residual blocks
 - Two separate feed-forward policy and value heads
- Actions are sampled from the MCTS policy during training, but selected greedily during deployment

muZero: Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model

- AlphaZero transferred to settings without a perfect simulator
 - Remember: MCTS performs multiple rollouts, for which we must query a simulator
 - Also: muZero generalizes to single agent domains and with intermediate rewards settings
- Instance of model-based RL
- Apart from board games, achieved new state-of-the-art performance on the Atari benchmark

muZero - Method

- Consists of three function approximators
 - **Dynamics function**: $g_{\theta}(s^{k-1}, a^k) = r^k, s^k$
 - Recurrent process that computes, at hypothetical step k, an immediate reward r^k and internal state s^k
 Unlike traditional approaches to model-based RL, s^k has no semantic meaning attached
 - Deterministic
 - **Prediction function**: $f_{\theta}(s^k) = p^k$, v^k
 - Analogous to AlphaGo or AlphaZero, but computed from internal state rather than "world state"
 - **Representation function**: $h_{\theta}(o_1, ..., o_t) = s^0$
 - Encodes past observations into "root" state
- Given such a model, it is possible to search over hypothetical future trajectories $a^1, ..., a^k$ given past observations

muZero – Planning using the Model

muZero - Training

Compared to past methods, representation and dynamics function also must be trained

- Place into rollout buffer:
 - All predictions, i.e., s^{k+1} , r^k , p^k , v^k
 - Actual reward u_{t+k} , value z_{t+k} and MCTS policy π_{t+k}
- Train end to end

$$l_t(\theta) = \sum_{k=0}^{K} l^r(u_{t+k}, r_t^k) + l^v(z_{t+k}, v_t^k) + l^p(\pi_{t+k}, \mathbf{p}_t^k) + c||\theta||^2$$

• All experiments used 5 unrolling steps into the future

muZero - Results

Figure 2: Evaluation of *MuZero* throughout training in chess, shogi, Go and Atari. The x-axis shows millions of training steps. For chess, shogi and Go, the y-axis shows Elo rating, established by playing games against *Alp-haZero* using 800 simulations per move for both players. *MuZero*'s Elo is indicated by the blue line, *AlphaZero*'s Elo by the horizontal orange line. For Atari, mean (full line) and median (dashed line) human normalized scores across all 57 games are shown on the y-axis. The scores for R2D2 [21], (the previous state of the art in this domain, based on model-free RL) are indicated by the horizontal orange lines. Performance in Atari was evaluated using 50 simulations every fourth time-step, and then repeating the chosen action four times, as in prior work [25].

muZero - Results

Agent	Median	Mean	Env. Frames	Training Time	Training Steps	
Ape-X [18]	434.1%	1695.6%	22.8B	5 days	8.64M	
R2D2 [21]	1920.6%	4024.9%	37.5B	5 days	2.16M	
MuZero	2041.1%	4999.2%	20.0B	12 hours	1 M	
IMPALA [9]	191.8%	957.6%	200M	_	_	
Rainbow [17]	231.1%	—	200M	10 days	—	
UNREAL ^a [19]	250% ^a	880% ^a	250M	—	—	
LASER [36]	431%	—	200M	—	_	
MuZero Reanalyze	731.1%	2168.9%	200M	12 hours	1M	

Table 1: **Comparison of** *MuZero* **against previous agents in Atari**. We compare separately against agents trained in large (top) and small (bottom) data settings; all agents other than *MuZero* used model-free RL techniques. Mean and median scores are given, compared to human testers. The best results are highlighted in **bold**. *MuZero* sets a new state of the art in both settings. ^aHyper-parameters were tuned per game.

Cross-Entropy Method (CEM)

Cross-Entropy Method (CEM)

Pseudocode

Initialize $\mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d$ **for** iteration = 1, 2, ... **do** Collect n samples of $\theta_i \sim N(\mu, \text{diag}(\sigma))$ Perform a noisy evaluation $R_i \sim \theta_i$ Select the top p% of samples (e.g. p = 20), which we'll call the elite set Fit a Gaussian distribution, with diagonal covariance, to the elite set, obtaining a new μ, σ . end for Return the final μ .

MLSS 2016 on Deep Reinforcement Learning by John Schulman

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!