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Cross-Entropy Method (CEM)
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Online Planning with Continuous Actions

Sampling methods → Cross Entropy Maximization

▪ Gradient-free

▪ Population-based (like e.g., Genetic Algorithms), can escape local optima

3

Use Gaussian to sample around 

current parameter mean

https://sites.google.com/view/mbrl-tutorial 

Cross Entropy Maximization

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.



Online Planning with Continuous Actions

Sampling methods → Cross Entropy Maximization

▪ Gradient-free

▪ Population-based (like e.g., Genetic Algorithms), can escape local optima

4

Evaluate (using the model) the sampled  

parameters and keep the top K samples

https://sites.google.com/view/mbrl-tutorial 

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Online Planning with Continuous Actions

Sampling methods → Cross Entropy Maximization

▪ Gradient-free

▪ Population-based (like e.g., Genetic Algorithms), can escape local optima

5

Re-fit the sampling Gaussian 

using the top K samples

https://sites.google.com/view/mbrl-tutorial 

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Cross-Entropy Method (CEM)
Pseudocode
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MLSS 2016 on Deep Reinforcement Learning by John Schulman



Exploration vs. Exploitation
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Exploration vs. Exploitation
Why and How
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▪ Both definitions stem from the same problem:

▪ Exploration: do things you haven’t done before
(in the hopes of getting even higher reward)
→ increase knowledge

▪ Exploitation: do what you know to yield highest reward
→ maximize performance based on knowledge

Multi-armed bandits

(1-step stateless

RL problems)

Contextual bandits

(1-step

RL problems)

Small, finite MDPs

(e.g., tractable planning,

model-based RL)

Large, infinite MDPs

(e.g., continuous spaces)

theoretically tractable theoretically intractable

(illustration adapted from Sergey Levine’s CS285 class from UC Berkeley)



Exploration vs. Exploitation
Multi-Armed Bandits and Regret
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▪ The multi-armed-bandit problem is a classic problem used to study the
exploration vs. exploitation dilemma

▪ Imagine you are in a casino with multiple slot machines, each configured
with an unknown reward probability:

▪ Under the assumption of an infinite number of trials:

→ What is the best strategy to achieve highest long-term rewards? 

▪ Our loss function is the total regret we might have by not select the optimal action up to the time step 𝑇:

ℒ𝑇 = 𝔼 

𝑡=1

𝑇

𝜃∗ − 𝑄 𝑎𝑡 = 

𝑎∈𝒜

𝑁𝑇 𝑎 ∆𝑎

45%

Slot Machine #1

60%

Slot Machine #2

20%

Slot Machine #3

25%

Slot Machine #4

?

per-action regret

action-selection counterwhat we should have been doing

what we did



Exploration vs. Exploitation
Straightforward but usually bad: Greedy or 𝜀-greedy
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▪ Greedy may select a suboptimal action forever
→ Greedy has hence linear expected total regret

▪ 𝜖-greedy continues to explore forever

▪ with probability 1 − 𝜖 it selects 𝑎 = argmax
𝑎∈𝒜

𝑄𝑇(𝑎)

▪ with probability 𝜖 it selects a random action

▪ Will hence continue to select all suboptimal actions with (at least) a probability of 
𝜖

𝒜

→ 𝜖-greedy, with a constant 𝜖 has a linear expected total regret

▪ Option #1: decrease 𝝐 over course of training might work

▪ It is not easy to tune the parameters

▪ Option #2: be optimistic with options of high 
uncertainty

▪ Prefer actions for which you do not have a confident 
value estimation yet
→ Those have a great potential to be high-rewarding!

▪ This idea is called Upper Confidence Bounds



Exploration vs. Exploitation
Upper Confidence Bounds (UCB1)
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▪ Idea: estimate an upper confidence 𝑈𝑡 𝑎 for each action value, such that with a high probability we satisfy

𝑄 𝑎 ≤ 𝑄𝑡 𝑎 + 𝑈𝑡(𝑎)

▪ Next, we select the action that maximizes the upper confidence bound:

𝑎𝑡
𝑈𝐶𝐵 = argmax

𝑎∈𝒜
𝑄𝑡 𝑎 + 𝑈𝑡(𝑎)

Small 𝑁𝑡 𝑎 → large bound 𝑈𝑡(𝑎) (estimated value is 

uncertain)

Large 𝑁𝑡 𝑎 → small bound 𝑈𝑡(𝑎) (estimated value is 

certain/accurate)

▪ The vanilla UCB1 algorithm uses 𝑝 = 𝑡−4:

𝑈𝑡 𝑎 =
2 log 𝑡

𝑁𝑡 𝑎
and    𝑎𝑡

𝑈𝐶𝐵 = argmax
𝑎∈𝒜

𝑄 𝑎 +
2 log 𝑡

𝑁𝑡(𝑎)

▪ This ensures that we always keep exploring

▪ But we select the optimal action much more often as 𝑡 → ∞

Derived from Hoeffding’s Inequality:

𝑃 𝔼 𝑋 ≥ ത𝑋𝑡 + 𝑢 ≤ 𝑒−2𝑡𝑢
2



Exploration vs. Exploitation
Probability Matching via Thompson Sampling
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We can also try the idea of directly sampling the action

▪ Select action 𝑎 according to probability that 𝑎 is the optimal action (given the history of everything we observed so far):
𝜋𝑡 𝑎|ℎ𝑡 = 𝑃 𝑄 𝑎 > 𝑄 𝑎′ , ∀𝑎′ ≠ 𝑎| ℎ𝑡

𝜋𝑡 𝑎|ℎ𝑡 = 𝔼𝑟|ℎ𝑡 𝕀 𝑎 = argmax
𝑎∈𝒜

𝑄 𝑎

Probability matching via Thompson Sampling:

1. Assume 𝑄 𝑎 follows a Beta distribution for the Bernoulli bandit

▪ As 𝑄(𝑎) is the success probability of 𝜃

▪ Beta 𝛼, 𝛽 is within 0,1  ,and 𝛼 and 𝛽 relate to the counts of success/failure

2. Initialize prior (e.g., 𝛼 = 𝛽 = 1 or something different/what we think it is)

3. At each time step 𝑡 we sample an expected reward 𝑄 𝑎 from the prior Beta 𝛼𝑖 , 𝛽𝑖 for every action

▪ We select and execute the best action among the samples: 𝑎𝑖
𝑇𝑆 = argmax

𝑎∈𝒜
𝑄 𝑎

4. With the newly observed experience we update the Beta distribution:

𝛼𝑖 ← 𝛼𝑖 + 𝑟𝑖𝕀 𝑎𝑡
𝑇𝑆 = 𝑎𝑖

𝛽𝑖 ← 𝛽𝑖 + (1 − 𝑟𝑖)𝕀 𝑎𝑡
𝑇𝑆 = 𝑎𝑖



Exercise Sheet 10
Bandits
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Thank you for your attention!
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