

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 10: Multi-armed Bandits

30.06.2023

Nico Meyer

Exercise Sheet 9 Cross-Entropy Method (CEM)

Online Planning with Continuous Actions

Cross Entropy Maximization

Sampling methods \rightarrow Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Use Gaussian to sample around current parameter mean

https://sites.google.com/view/mbrl-tutorial

Online Planning with Continuous Actions

Cross Entropy Maximization

Sampling methods \rightarrow Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Evaluate **(using the model)** the sampled parameters and keep the top K samples

Cross-Entropy Method (one iteration)			
$oldsymbol{ heta}_{k=1K} \sim \mathcal{N}(oldsymbol{ heta}, \Sigma)$	sample	(1)	
$J_k = J(oldsymbol{ heta}_k)$	eval.	(2)	
$oldsymbol{ heta}_{k=1K} \gets \texttt{sort} \; oldsymbol{ heta}_{k=1K} \; \texttt{w.r.t} \; J_{k=1K}$	\mathbf{sort}	(3)	
$oldsymbol{ heta}^{new} = \sum_{k=1}^{K_e} rac{1}{K_e} oldsymbol{ heta}_k$	update	(4)	
$\boldsymbol{\Sigma}^{new} = \sum_{k=1}^{K_e} \frac{1}{K_e} (\boldsymbol{\theta}_k - \boldsymbol{\theta}) (\boldsymbol{\theta}_k - \boldsymbol{\theta})^{T}$	update	(5)	

https://sites.google.com/view/mbrl-tutorial

Online Planning with Continuous Actions

Cross Entropy Maximization

Sampling methods \rightarrow Cross Entropy Maximization

- Gradient-free
- Population-based (like e.g., Genetic Algorithms), can escape local optima

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Re-fit the sampling Gaussian using the top K samples

https://sites.google.com/view/mbrl-tutorial

Cross-Entropy Method (CEM) Pseudocode

Initialize $\mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d$ for iteration $= 1, 2, \ldots$ do Collect n samples of $\theta_i \sim N(\mu, \text{diag}(\sigma))$ Perform a noisy evaluation $R_i \sim \theta_i$ Select the top p% of samples (e.g. p = 20), which we'll call the elite set Fit a Gaussian distribution, with diagonal covariance, to the elite set, obtaining a new μ, σ . end for Return the final μ .

MLSS 2016 on Deep Reinforcement Learning by John Schulman

Why and How

- Both definitions stem from the same problem:
 - Exploration: do things you haven't done before (in the hopes of getting even higher reward)
 → increase knowledge
 - Exploitation: do what you know to yield highest reward
 maximize performance based on knowledge

Multi-armed bandits	Contextual bandits	Small, finite MDPs	Large, infinite MDPs (e.g., continuous spaces)
(1-step stateless	(1-step	(e.g., tractable planning,	
RL problems)	RL problems)	model-based RL)	
theoretically tractable			theoretically intractable

(illustration adapted from Sergey Levine's CS285 class from UC Berkeley)

Multi-Armed Bandits and Regret

- The multi-armed-bandit problem is a classic problem used to study the exploration vs. exploitation dilemma
- Imagine you are in a casino with multiple slot machines, each configured with an unknown reward probability:
- Under the assumption of an infinite number of trials:
- ightarrow What is the best strategy to achieve highest long-term rewards?
- Our loss function is the total regret we might have by not select the optimal action up to the time step *T*:

Slot Machine

Straightforward but usually bad: Greedy or ε -greedy

- Greedy may select a suboptimal action forever
 → Greedy has hence linear expected total regret
- *e*-greedy continues to explore forever
 - with probability 1ϵ it selects $a = \arg \max_{a \in A} Q_T(a)$
 - with probability
 e it selects a random action
- Will hence continue to select all suboptimal actions with (at least) a probability of $\frac{\epsilon}{|A|}$ $\rightarrow \epsilon$ -greedy, with a constant ϵ has a linear expected total regret

- Option #1: decrease
 e over course of training might work
 - It is not easy to tune the parameters

- Option #2: be optimistic with options of high uncertainty
 - Prefer actions for which you do not have a confident value estimation yet
 - \rightarrow Those have a great potential to be high-rewarding!
 - This idea is called Upper Confidence Bounds

Exploration vs. Exploitation Upper Confidence Bounds (UCB1)

• Idea: estimate an upper confidence $U_t(a)$ for each action value, such that with a high probability we satisfy

$$Q(a) \leq \hat{Q}_t(a) + U_t(a)$$

• Next, we select the action that maximizes the upper confidence bound:

$$a_t^{UCB} = \arg \max_{a \in \mathcal{A}} [Q_t(a) + U_t(a)]$$

Large $N_t(a) \rightarrow$ small bound $U_t(a)$ (estimated value is certain/accurate)

Small $N_t(a) \rightarrow$ large bound $U_t(a)$ (estimated value is uncertain)

- The vanilla **UCB1** algorithm uses $p = t^{-4}$: $U_t(a) = \sqrt{\frac{2\log t}{N_t(a)}}$ and $a_t^{UCB} = \arg \max_{a \in \mathcal{A}} Q(a) + \sqrt{\frac{2\log t}{N_t(a)}}$ $Derived from Hoeffding's Inequality: <math>P(\mathbb{E}[X] \ge \overline{X}_t + u) \le e^{-2tu^2}$
 - This ensures that we always keep exploring
 - But we select the optimal action much more often as $t \rightarrow \infty$

Probability Matching via Thompson Sampling

We can also try the idea of directly sampling the action

Select action *a* according to probability that *a* is the optimal action (given the history of everything we observed so far):

$$\pi_t(a|h_t) = P[Q(a) > Q(a'), \forall a' \neq a | h_t]$$

= $\mathbb{E}_{r|h_t} \left[\mathbb{I} \left(a = \arg \max_{a \in \mathcal{A}} Q(a) \right) \right]$

Probability matching via Thompson Sampling:

- 1. Assume Q(a) follows a Beta distribution for the Bernoulli bandit
 - As Q(a) is the success probability of θ
 - Beta(α , β) is within [0,1], and α and β relate to the counts of success/failure
- 2. Initialize prior (e.g., $\alpha = \beta = 1$ or something different/what we think it is)
- 3. At each time step t we sample an expected reward $\hat{Q}(a)$ from the prior Beta (α_i, β_i) for every action
 - We select and execute the best action among the samples: $a_i^{TS} = \arg \max_{a \in \mathcal{A}} \hat{Q}(a)$
- 4. With the newly observed experience we update the Beta distribution:

$$\alpha_i \leftarrow \alpha_i + r_i \mathbb{I}[a_t^{TS} = a_i]$$

$$\beta_i \leftarrow \beta_i + (1 - r_i) \mathbb{I}[a_t^{TS} = a_i]$$

Exercise Sheet 10 Bandits

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!