
Reinforcement Learning

—

Exercise 11: RND/ICM
07.07.2023

Sebastian Rietsch



Exploration vs. Exploitation

Slide 2



Exploration vs. Exploitation
Why and How

Slide 3

§ Both definitions stem from the same problem:
§ Exploration: do things you haven’t done before

(in the hopes of getting even higher reward)
à increase knowledge

§ Exploitation: do what you know to yield highest reward
à maximize performance based on knowledge

Multi-armed bandits
(1-step stateless

RL problems)

Contextual bandits
(1-step

RL problems)

Small, finite MDPs
(e.g., tractable planning,

model-based RL)

Large, infinite MDPs
(e.g., continuous spaces)

theoretically tractable theoretically intractable

(illustration adapted from Sergey Levine’s CS285 class from UC Berkeley)



Exploration vs. Exploitation
Multi-Armed Bandits and Regret

Slide 4

§ The multi-armed-bandit problem is a classic problem used to study the
exploration vs. exploitation dilemma

§ Imagine you are in a casino with multiple slot machines, each configured
with an unknown reward probability:

§ Under the assumption of an infinite number of trials:
à What is the best strategy to achieve highest long-term rewards? 

§ Our loss function is the total regret we might have by not select the optimal action up to the time step 𝑇:

ℒ! = 	𝔼 &
"#$

!

𝜃∗ − 𝑄 𝑎" = &
&∈𝒜

𝑁! 𝑎 ∆&

45%

Slot Machine #1

60%

Slot Machine #2

20%

Slot Machine #3

25%

Slot Machine #4

?

per-action regret

action-selection counterwhat we should have been doing

what we did



Exploration vs. Exploitation
Straightforward but usually bad: Greedy or 𝜀-greedy

Slide 5

§ Greedy may select a suboptimal action forever
à Greedy has hence linear expected total regret

§ 𝜖-greedy continues to explore forever

§ with probability 1 − 𝜖 it selects 𝑎 = argmax
&∈𝒜

𝑄!(𝑎)

§ with probability 𝜖 it selects a random action

§ Will hence continue to select all suboptimal actions with (at least) a probability of )
𝒜

à 𝜖-greedy, with a constant 𝜖 has a linear expected total regret

§ Option #1: decrease 𝝐 over course of training might work
§ It is not easy to tune the parameters

§ Option #2: be optimistic with options of high 
uncertainty
§ Prefer actions for which you do not have a 

confident value estimation yet
à Those have a great potential to be high-
rewarding!

§ This idea is called Upper Confidence Bounds



Exploration vs. Exploitation
Upper Confidence Bounds (UCB1)

Slide 6

§ Idea: estimate an upper confidence 𝑈" 𝑎 for each action value, such that with a high probability we satisfy

𝑄 𝑎 ≤ 9𝑄" 𝑎 + 𝑈"(𝑎)

§ Next, we select the action that maximizes the upper confidence bound:

𝑎"*+, = argmax
&∈𝒜

𝑄" 𝑎 + 𝑈"(𝑎)
Small 𝑁! 𝑎 à large bound 𝑈!(𝑎) (estimated value is 
uncertain)

Large 𝑁! 𝑎 à small bound 𝑈!(𝑎) (estimated value is 
certain/accurate)

§ The vanilla UCB1 algorithm uses 𝑝 = 𝑡23:

𝑈" 𝑎 = 4 567 "
8! &

and    𝑎"*+, = argmax
&∈𝒜

𝑄 𝑎 + 4 567 "
8!(&)

§ This ensures that we always keep exploring
§ But we select the optimal action much more often as 𝑡 → ∞

Derived	from	Hoeffding’s Inequality:
𝑃 𝔼 𝑋 ≥ <𝑋" + 𝑢 ≤ 𝑒#$"%!



Exploration vs. Exploitation
Probability Matching via Thompson Sampling

Slide 7

We can also try the idea of directly sampling the action
§ Select action 𝑎 according to probability that 𝑎 is the optimal action (given the history of everything we observed so far):

𝜋" 𝑎|ℎ" = 𝑃 𝑄 𝑎 > 𝑄 𝑎′ , ∀𝑎9 ≠ 𝑎| ℎ"
𝜋" 𝑎|ℎ" = 𝔼:|<! 𝕀 𝑎 = argmax

&∈𝒜
𝑄 𝑎

Probability matching via Thompson Sampling:

1. Assume 𝑄 𝑎 follows a Beta distribution for the Bernoulli bandit
§ As 𝑄(𝑎) is the success probability of 𝜃
§ Beta 𝛼, 𝛽 is within 0,1 , and 𝛼 and 𝛽 relate to the counts of success/failure

2. Initialize prior (e.g., 𝛼 = 𝛽 = 1 or something different/what we think it is)

3. At each time step 𝑡 we sample an expected reward 9𝑄 𝑎 from the prior Beta 𝛼=, 𝛽= for every action

§ We select and execute the best action among the samples: 𝑎"!> = argmax
&∈𝒜

9𝑄 𝑎

4. With the newly observed experience we update the Beta distribution:

𝛼= ← 𝛼= + 𝑟=𝕀 𝑎"!> = 𝑎=
𝛽= ← 𝛽= + (1 − 𝑟=)𝕀 𝑎"!> = 𝑎=



Exercise Sheet 10
Bandits

Slide 8



Prediction-based Exploration in Deep RL
ICM and RND

Slide 9



Exploration in Deep RL
Intrinsic Rewards as Exploration Bonuses

§ Instead of 𝑟 𝑠, 𝑎 we provide 𝑟? 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + ℬ 𝑁 𝑠

§ We can give this to any model-free agent!
§ A general formulation looks like this:

𝑟" = 𝑟"@ + 𝛽 ⋅ 𝑟"=	

§ 𝛽 is a hyperparameter that adjusts the balance between exploitation and exploration
§ 𝑟"@ is called the extrinsic reward form the environment at time 𝑡
§ 𝑟"= is called the intrinsic reward, i.e., the exploration bonus at time 𝑡

§ The intrinsic reward is/can be inspired intrinsic motivation1 and we can transfer those findings to RL too:
1. Discovery of novel states
2. Improvement of the agent’s knowledge about the environment

10

decreases with 𝑁 𝑠

1 Pierre-Yves Oudeyer and Frederic Kaplan: How can we define intrinsic motivation? 8th Intl. Conf. Epigenetic Robotics



Prediction-based Exploration
Predicting Models: Forward Dynamics

§ Idea of the forward dynamics prediction model:

§ The agent learns a parameterized function 𝑓A such that:

𝑓A: 𝑠", 𝑎" → 𝑠"?$

§ Derive a reward bonus based on the prediction error of the dynamics model

𝑒 𝑠", 𝑎" = 𝑓 𝑠", 𝑎" − 𝑠"?$ 4
4

§ Large prediction error: high bonus (as we encountered something unusual/unknown)
§ Low prediction error: low bonus (as we have seen this coming)

§ Our agent uses all the experience samples 𝑠", 𝑎", 𝑠"?$ collected so far and retrains its prediction model as it interacts 
with the environment

11



Prediction-based Exploration
Predicting Forward Dynamics

Deep Predictive Models1

§ Predicting high-dimensional state spaces (images) can become very difficult
§ Train a forward dynamics model in an encoding space 𝜙 (train an autoencoder):

𝑓B: 𝜙 𝑠" , 𝑎" → 𝜙 𝑠"?$

§ Normalize the prediction error at time 𝑇 by the maximum error so far:

𝑒̅" =
𝑒"

max
=C"

𝑒=

§ Define the extrinsic reward accordingly (𝐶 is a decay parameter):

𝑟"= =
𝑒" 𝑠", 𝑎"
𝑡 ⋅ 𝐶

§ The autoencoder can be trained upfront using images collected randomly or trained along with the policy and being 
updated steadily.

12

1 Stadie, Levine, Abbeel: Incentivizing Exploration in Reinforcement Learning with Deep Predictive Models. 2015.



Prediction-based Exploration
Predicting Forward Dynamics

Intrinsic Curiosity Module (ICM)1

§ Instead of an autoencoder ICM trains the state space
encoding 𝜙(𝑠") with a self-supervised inverse dynamics model

§ Motivation:
§ Predicting 𝑠"?$ given 𝑠", 𝑎" is not always easy as many factors in

the environment cannot be controlled/affected by the agent
§ Popular example: imagine this tree with leaves
§ Such factors should not be part of the encoded state space as

the agent should not base its decision based on these factors

§ Solution: Learn an inverse dynamics model 𝑔:

𝑔: 𝜙 𝑠" , 𝜙 𝑠"?$ → 𝑎"

§ The feature space then only captures those changes in the environment related to actions that the agent takes, and ignores 
the rest

13

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.

learn to explore in Level-1 explore faster in Level-2



Prediction-based Exploration

Intrinsic Curiosity Module (ICM)1, given
§ a forward model 𝑓 with parameters 𝜃D
§ an inverse dynamics model 𝑔 with parameters 𝜃E
§ and an observation 𝑠", 𝑎", 𝑠"?$

§ The policy is jointly optimized as a whole:

min
A&,A',A(

−𝜆𝔼G H!;A& ∑" 𝑟" + 1 − 𝛽 𝐿E + 𝛽𝐿D

14

Curiosity-driven Exploration by Self-supervised Prediction

Forward 
Model 

Inverse 
Model 

fe
at

ur
es

 

fe
at

ur
es

 

E

ICM$

st st+1

ri
tri

t

st+1stat

at at+1

�(st) �(st+1)

�̂(st+1) ât

ICM$

re
t+1 + ri

t+1re
t + ri

t

Figure 2. The agent in state st interacts with the environment by executing an action at sampled from its current policy ⇡ and ends up in
the state st+1. The policy ⇡ is trained to optimize the sum of the extrinsic reward (ret ) provided by the environment E and the curiosity
based intrinsic reward signal (rit) generated by our proposed Intrinsic Curiosity Module (ICM). ICM encodes the states st, st+1 into the
features �(st),�(st+1) that are trained to predict at (i.e. inverse dynamics model). The forward model takes as inputs �(st) and at

and predicts the feature representation �̂(st+1) of st+1. The prediction error in the feature space is used as the curiosity based intrinsic
reward signal. As there is no incentive for �(st) to encode any environmental features that can not influence or are not influenced by the
agent’s actions, the learned exploration strategy of our agent is robust to uncontrollable aspects of the environment.

We represent the policy ⇡(st; ✓P ) by a deep neural network
with parameters ✓P . Given the agent in state st, it executes
the action at ⇠ ⇡(st; ✓P ) sampled from the policy. ✓P is
optimized to maximize the expected sum of rewards,

max
✓P

E⇡(st;✓P )[⌃trt] (1)

Unless specified otherwise, we use the notation ⇡(s) to de-
note the parameterized policy ⇡(s; ✓P ). Our curiosity re-
ward model can potentially be used with a range of policy
learning methods; in the experiments discussed here, we
use the asynchronous advantage actor critic policy gradient
(A3C) (Mnih et al., 2016) for policy learning. Our main
contribution is in designing an intrinsic reward signal based
on prediction error of the agent’s knowledge about its en-
vironment that scales to high-dimensional continuous state
spaces like images, bypasses the hard problem of predict-
ing pixels and is unaffected by the unpredictable aspects of
the environment that do not affect the agent.

2.1. Prediction error as curiosity reward

Making predictions in the raw sensory space (e.g. when
st corresponds to images) is undesirable not only because
it is hard to predict pixels directly, but also because it is
unclear if predicting pixels is even the right objective to
optimize. To see why, consider using prediction error in
the pixel space as the curiosity reward. Imagine a scenario
where the agent is observing the movement of tree leaves
in a breeze. Since it is inherently hard to model breeze,
it is even harder to predict the pixel location of each leaf.

This implies that the pixel prediction error will remain high
and the agent will always remain curious about the leaves.
But the motion of the leaves is inconsequential to the agent
and therefore its continued curiosity about them is undesir-
able. The underlying problem is that the agent is unaware
that some parts of the state space simply cannot be mod-
eled and thus the agent can fall into an artificial curiosity
trap and stall its exploration. Novelty-seeking exploration
schemes that record the counts of visited states in a tabular
form (or their extensions to continuous state spaces) also
suffer from this issue. Measuring learning progress instead
of prediction error has been proposed in the past as one so-
lution (Schmidhuber, 1991). Unfortunately, there are cur-
rently no known computationally feasible mechanisms for
measuring learning progress.

If not the raw observation space, then what is the right fea-
ture space for making predictions so that the prediction
error provides a good measure of curiosity? To answer
this question, let us divide all sources that can modify the
agent’s observations into three cases: (1) things that can
be controlled by the agent; (2) things that the agent cannot
control but that can affect the agent (e.g. a vehicle driven
by another agent), and (3) things out of the agent’s control
and not affecting the agent (e.g. moving leaves). A good
feature space for curiosity should model (1) and (2) and be
unaffected by (3). This latter is because, if there is a source
of variation that is inconsequential for the agent, then the
agent has no incentive to know about it.

A𝑎" = 𝑔 𝜙(𝑠"), 𝜙(𝑠")*); 𝜃+

L𝜙 𝑠")* = 𝑓 𝜙 𝑠" , 𝑎"; 𝜃,

𝑟"- =
𝜂
2

L𝜙 𝑠")* − 𝜙(𝑠")*)
$

$
	

𝐿! 𝜙 𝑠" , 2𝜙 𝑠"#$ =
1
2

2𝜙 𝑠"#$ − 𝜙(𝑠"#$)
%

%

	policy gradient loss

if actions are discrete: softmax ML
under multinomial distribution

Predicting Forward Dynamics

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.



Prediction-based Exploration
Prediction Models: Random Networks

Random Network Distillation (RND)1,2

§ Similar idea: predict something that is independent from the main task

§ We use two neural networks:
1. A randomly initialized but fixed

neural network to transform a state
into a feature space: 𝑓 𝑠"

2. A network ]𝑓 𝑠"; 𝜃 	that we train to predict
the same features as the fixed network

à We want ]𝑓 𝑠"; 𝜃 = 𝑓(𝑠")

§ Intuition: Similar states have similar features
§ And if we have already seen them, we should

also have a lower error on predicting them!

§ We use an exploration bonus: 𝑟= 𝑠" = ]𝑓 𝑠"; 𝜃 − 𝑓 𝑠" 4
4
	

15

1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.
2 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/


Prediction-based Exploration

Random Network Distillation (RND)
§ Advantage of synthetic prediction problem:

§ The fixed network makes the prediction target deterministic (bypassing issue #2)
§ It is inside the class of functions that the predictor can represent (bypassing issue #3) if the predictor and the target 

network have the same architecture.

§ Results:
§ RND works well for hard-exploration problems

à maximizing RND bonus finds half of the rooms in Montezuma’s Revenge
§ Normalization is important! The scale of the rewards is tricky to

adjust given a random network as prediction target
à Normalize by a running estimate of standard deviations of intrinsic return

§ Non-episodic settings work better, especially in cases without
extrinsic rewards (the return is not truncated at game over and
intrinsic return can spread across multiple episodes)

16

1 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

Random Network Distillation



Exercise Sheet 11
ICM and RND

Slide 17



Thank you for your attention!


