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Exercise 10

Bandits, Bandits, Bandits

In this exercise we will implement some of the methods for multi-armed bandits you saw in the lecture.
This will be one of the shorter exercises, so we encourage everyone to give it a try.

You will work with the MultiArmedBandit environment inside env.py. Based on an n-dimensional input
array it constructs a n-armed bandit with win probabilities specified by the respective array entries. Your
task is to implement the body of the action_selection function inside the child classes inheriting from
BaseAgent. Please also get familiar with the train function inside the base class.

To really highlight the benefits and drawbacks of certain methods, we test our implementation on a 1000-
armed bandit with only one arm having a win-probability > 80%.

Programming Tasks

1. Your task is to implement:

• A random agent (inside class RandomAgent)

• An epsilon-greedy agent (EpsilonGreedAgent)

• An agent using UCB1 (UCB1Agent), and

• Probability matching via thompson sampling (ProbabilityMatching).

2. After you implemented the UCB1 agent, you might notice that it doesn’t perform as great as
expected. What might be the reason? Try to find a way to fix this.

Now, try to interpret the result graphs you are seeing after running the bandit_agents.py file and try to
answer the following questions:

1. Why does the RMSE between utility/value estimate and true utility (win-probabilities) not correlate
with the regret?

2. What is the reason that epsilon-greedy’s end performance is lower compared to UCB1 and probability
matching? What would you need to change? (Hint: we already did this in a past exercise)

3. Looking at these results, do you see a benefit of using probability matching compared to UCB1?
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