
Reinforcement Learning @FAU
Summer Term 2023

Sebastian Rietsch, Nico Meyer, Christopher Mutschler
2023-07-14 – Due 2023-07-19

Exercise 12

Discrete Batch-Constrained deep Q-Learning

(BCQ)

This exercise will implement the discrete BCQ algorithm described in the paper ”Benchmarking Batch
Deep Reinforcement Learning Algorithms” and employ it on the CartPole-v1 environment. For this, we
first pre-train a standard DDQN agent (not neccessarily all the way to perfect behaviour) to generate
offline data. The BCQ algorithm then is trained on this data, without the possibility of direct interaction
with the environment – i.e. offline reinforcement learning.

Based on the skeleton, you should be able to complete this exercise with around three lines of code.

Programming Tasks: Inside bcq.py, you have to fill several core steps of the discrete BCQ algorithm.
The routine for pre-training the agent and offline data generation is already implemented (but feel free to
experiment with the hyperparameter settings).

1. Sample a batch of experience (i.e. observation, action, reward, consecutive state, termination flag)
from the offline buffer. The buffer is given as a ReplayBuffer object, see the ddqn.py file.

2. Compute the target Q-values (using the target network!), which is required in the loss function of
the Q-value approximator:

L(θ) = E [r + γQθ′(s
′, a′) −Qθ(s, a)]

Note: Be careful when determining the action a′, see also the next task.

3. Use the q-value and the imitation network to predict the action for a given state in a constrained
neighborhood via

a′ = argmax
Gω(a′ ∣s′)/maxãGω(ã∣s′)>T

Qθ(s
′, a′),

where T is the BCQ threshold andGω is a approximation of the behavioral policy (see the BCQNetwork
class). Feel free to tune this thresholds, as it is a crucial for a good performance.

The performance of the BCQ agent is determined to a big part by the quality of the data it is fed. You can
experiment with this pre-training the data-generating DDQN agent to different performances, for some
examples see Figure 1.

Figure 1: Performance of BCQ trained on data of different quality ; (left) training with data generated
following near-optimal policy (right) training with data from policy with average reward of 256.3

1

https://arxiv.org/abs/1910.01708
https://arxiv.org/abs/1910.01708

