
Reinforcement Learning @FAU
Summer Term 2023

Sebastian Rietsch, Nico Meyer, Christopher Mutschler
2023-05-05 – Due 2023-05-12

Exercise 3

Gymnasium and TD-Learning

1 Gymnasium Gridworld

The Gymnasium/OpenAI Gym interface is a common standard for environments in reinforcement learning.
It defines five methods that your environment has to implement. Providing the interface makes your
environment compatible with nearly every RL framework (stable-baselines3, Tianshou, RLlib, ...).

The documentation and further information can be found here:

• https://farama.org/Announcing-The-Farama-Foundation

• https://gymnasium.farama.org/

• https://github.com/Farama-Foundation/Gymnasium

In this exercise, you will implement an environment based on the MDP definition. A simple grid world,
similar to the last exercise, but with two different types of terminal states (two positives, G, and one
negative T):

S

G T G

self.map =

action_space

R =

1 if s = G

-1 if s = T

0 else

The agent starts in the cell marked S. At each time step, the agent can step up, right, down, or left if the
agent reaches the goal (G), he receives a reward of 1, and the episode ends. If he falls into a trap (T), the
episode ends with a reward of -1. Actions that would result in the agent leaving the board have no effect.

Programming Tasks:

1. init (). A gymnasium environment has to define its action and state space via two members,
action space and observation space. Define the appropriate spaces inside the constructor. Also,
add a member for the current environment state and assign the start state to it.

2. reset(). To reset the environment, a reset() method is required. This method should reset the
environment state to a possible start state and return the observation for this state.

3. step(action). To simulate a one-time step, the method step(action) is called with the agent’s
action. This method should simulate the environment dynamics and the agent’s actions in one time
step.

step(action) should simulate one step in the environment and return a tuple (observation,
reward, terminated, truncated, info) that describes the transition. observation is the agent’s
perception of the new state. reward is the agent’s reward in the new state. terminal is True if
the next state is terminal, False otherwise. truncated can be neglegted for exercise an can be
set to False. info is a list or dictionary that contains additional (debug) information about the
environment – for this implementation, you can return an empty dictionary ({}).

1

https://farama.org/Announcing-The-Farama-Foundation
https://gymnasium.farama.org/
https://github.com/Farama-Foundation/Gymnasium

Reinforcement Learning @FAU
Summer Term 2023

Sebastian Rietsch, Nico Meyer, Christopher Mutschler
2023-05-05 – Due 2023-05-12

4. render(). This helper method visualizes the current state in a human- or agent-readable way. In
our case, this method should print an ASCII representation of the current map and agent.

5. close(). This method frees up any resources (file handles, sockets, ...) that your environment needs
to operate. In our case, the provided implementation (pass) does not need to be adapted.

Before continuing to the second exercise, we encourage you to test your implementation to find potential
errors and problems. You can run the env test.py file to execute random actions in your environment.

2 Temporal Difference Learning

TD-Learning is a technique that allows us to solve MDPs without access to the state transitions P . Your
task is implementing a TD-Learning agent that solves the environment you implemented in Exercise 1.
The file td agent.py contains the skeleton code for this exercise. We supply testing code that deploys a
random policy and visualizes the value function estimated through TD-Learning implementation.

Programming Tasks

1. learn(n timesteps). This method currently implements n timesteps of environment interaction
via selecting a random action and deploying it in the environment. Implement TD-Learning and
update the array self.V holding the current approximation at every time step. Run the script and
examine the V estimates.

2. Policy action(s). Currently, this method implements a random policy. Implement a better policy
(e.g., by mapping states to actions with a dictionary) and observe how the TD estimate of V changes
visually.

2

	Gymnasium Gridworld
	Temporal Difference Learning

