Reinforcement Learning @QFAU Sebastian Rietsch, Nico Meyer, Christopher Mutschler
Summer Term 2023 2023-05-19 — Due 2023-06-02

Exercise 6
Value Function Approximation

This exercise is all about value function approximation and how to implement it in PyTorch. We will start
with DQN in the first exercise, and build a more sophisticated version, i.e. Double DQN, in the next one.

1 Deep Q-Networks

We now want to implement DQN using PyTorch and find good policies for discrete action space environ-
ments. We will test our agent on the famous CartPole environment.

Programming Tasks:

1. Neural Network Architecture The neural network that will be used as a Q-function approximator
has to be defined inside the DQNNetwork class constructor. Your task is to define a network which:

e maps from num_obs (dimensionality of input observations) to num_actions (one Q value for
every possible action)
e uses torch.nn.Linear with ReLU/Tanh activations
e has a torch.nn.Linear layer as output layer (try to think about why this is)
You can decide by yourself how many layers and which intermediate feature dimensionality you use,

but for easy environment like CartPole one or two layers and an intermediate dimensionality of 64
or 128 is more than enough (and often also works much better and converges faster).

You can either pass inputs to the network manually through every layer or wrap all you layers into
a torch.nn.Sequential object and do this in one call.

2. Epsilon Decay DQN addresses exploration with the use of e-greedy policies, which performs a
random action with probability €, whereas the greedy action w.r.t the approximated Q-function is
taken with probability 1 — € . Implement the function epsilon_by_timestep, which returns:

e epsilon_start for timestep ==
e epsilon_end for timestep >= frames_decay
e a linearly decaying € for 0 < timestep < frames_decay
3. Action Prediction The DQN class represents the DQN agent. Based on the observation returned
by the gym environment and a specific epsilon value the agent should either:
e perform a random action with probability epsilon

e perform the action which has maximum Q-value for the given observation. For this you will
have to wrap the observation (np.array) into a torch.Tensor, bring it into batch format, pass
it through the network, and return the index of the network outputs which has maximum value.

4. Replay Buffer For off-policy methods like DQN to work it has been shown that it can be beneficial
to use a replay buffer, with which past experience of the agent can be stored and reused during
training. As an exercise you should implement the __init len__, put and get methods inside
the ReplayBuffer class.

—_) ——

e You can decide yourself how you want to implement this. One way would be to hold a list of
tuples (obs, action, reward, next_obs, done) inside a 1list or collections.deque object
and enforce a maximum size on it (delete oldest entries first once your replay buffer is full).

e get should return five lists, i.e. obs_1st, action_1st, ... Should you decide to store entries as
a list of tuples, you can convert them into said list format via zip(*¥tuple_list).

Reinforcement Learning @QFAU Sebastian Rietsch, Nico Meyer, Christopher Mutschler

Summer Term 2023 2023-05-19 — Due 2023-06-02
500
500
400 4 400
o 3001 o 300
5 5
= 2
& &
200 200 4
100 100 4
0 0
1] 30 100 150 200 250 300 350 él 5‘0 160 1:20 200
Episode Episode

Figure 1: (left) without target network; (right) with target network; Sample reward plot we were able to
achieve with our implementation on CartPole (hyperparameters as provided in skeleton, Linear(128) —
ReLU — Linear NN architecture)

e In get batch_size random entries from you buffer should be returned. Use random.sample(...)
for this.

e Don’t forget to implement the __len__ function which returns the number of entires inside
your replay buffer.

5. MSBE In order to train your DQN method you will need to calculate the mean-squared Bell-
man error (MSBE) inside DQN.compute_msbe_loss and return it. More specifically, for a set D of
batch_size transitions sampled from the replay buffer the MSBE is defined as:

L(¢, D) = Es a5 ay~p[(Qo(5,0) — (r +7(1 — d) max Qy(s', a")))’],

where we’ve used a Python convention of evaluation True to 1 and False to 0.

e In order to select the Q-values from a batch tensor calculated from a batch of states, which
correspond to the actions taken in the sampled transitions, you can use torch.gather. Alter-
natively you can use a loop.

e If s’ is a terminal state its Q-values are per definition zero. Take this into account during your
calculations.

6. Target Network Your network should now already be able to learn on easier problems. For more
challenging problems it has been shown that it can be beneficial to use a fixed target network with
which the TD target values (the r + ymaz,Q term above) are calculated.

(a) Create a second DQNNetwork object inside the DQN class constructor.
(b) Calculate the TD target values using only this network.

(¢) Synchronize it on construction and periodically during training
using target_net.load_state_dict(main_net.state_dict()).

Try to play around with hyperparameters a little bit. You might also try out training your DQN in a little
bit more challenging environments. Have a look at the documentation to get an overview.

2 Double Deep Q-Networks (Advanced)

In this exercise we will start from our DQN implementation from last exercise and extend it to the method
of Double Deep Q-Networks (Double DQN). Remember that in the last exercise, we used

Y2 = Repy +ymax @ (Ses1,0;07) (1)
as our target to calculate the mean-squared Bellman error (MSBE), where 6, means the parameter set of
the second target network.

It can be shown mathematically, that using such max operation to estimate the value of the next state
can lead to optimistic overestimation, as we use the same function approximator to select and evaluate an

https://gymnasium.farama.org/environments/classic_control/
https://arxiv.org/pdf/1509.06461.pdf

Reinforcement Learning @QFAU Sebastian Rietsch, Nico Meyer, Christopher Mutschler
Summer Term 2023 2023-05-19 — Due 2023-06-02

, O /

O ReLU O

ReLU ReLU ReLU e 0
O O O
Input [— [— — | — L — — ..
O O O

O O

8x8x32 4x4x64 3x3x64 O O

filter filter filter O
stride 4 stride 2 stride 1 512 units 256units output

layer

Figure 2: Original DQN network architecture for the Atari environment.

action. The original idea of Double Q-Learning Double Q-Learning, introduced in 20.., is to decouple the
selection from the evaluation by learning two Q-value estimators at the same time. Because we already
have two Q-networks in the DQN method, we can directly take advantage of this. Instead of training two
DQN networks with one target network each (four networks in total), Double DQN follows a more simple
approach, where we use the main network to select the best action based on its value estimates, but use
the value estimate of the target network for that action. This means that our update targets change into:

YPouPON = Ryt +9Q (Se41, argmax Q (Se41,a;0:), 07) (2)

where 0; means the main network parameter set. Eventhough it seems complicated at first, it is actually
really easy to adapt our implementation to this idea with a few lines of code changes.

To spice things up, we will further use our Double DQN implementation to train agents on the famous
Atari environment. In the following, we will focus on the game of Pong, but you are free to choose other
Atari games for your agent to learn playing. Be sure to use the requirements.txt file we ship with the
code skeleton through running pip install -r requirements.txt. Should you encounter problems after
installing the Atari Python packages on Windows, please try out the following solution. Alternatively, try
to install Atari thorugh conda, i.e. conda install -c conda-forge atari_py (provided you are using
Anaconda). This is the only exercise, where additional compute power will be helpful. If your computer
has a NVIDIA GPU with Cuda capabilities, please install the GPU compiled version of torch.

Programming Tasks:

1. Implementing Double DQN As elaborated above, change the implementation, such that the
new, double method is used to calculate the value estimation error. We marked the respective areas
requiring adaptation inside the code. Be careful to not accidentally backpropagate gradients through
the main network as part of the action selection process. Have a look at the calculate_msbe function
for this task.

You should first verify the correctness of your implementation on the Cartpole-vl environment
before moving on. Here, the learning speed will generally not drastically improve compared to
vanilla DQN. After you successfully tested out your implementation, you can move on to having
some fun with Atari.

2. Network Architecture The Atari environments can either be observed in RAM or RGB mode. We
advice to start with the RGB mode and maybe test out the RAM mode afterwards. In contrast to the
vector observation space from Cartpole, a simple feed-forward network does not suffice to estimate
state-action values, as for images we usually need CNNs to learn proper models. Implement the
architecture as seen in Figure [2| inside the DQNNetworkVisual class. What is not shown in the
picture is that you will also require ReLU layers.

3. Additional Adaptations Besides target networks, training DQNs and RL agents in general involves
some engineering and tricks. Implement the following training features:

e learning_start: It is often helpful to collect some experience and fill the replay buffer a little
bit before starting the actual optimization.

e train_freq: Similarly, it makes sense to adapt the training frequency (the number of timesteps
to run the environment before performing an update step).

4. You are now ready to train. Compared to CartPole, this might take some time.

https://github.com/openai/gym/issues/1726
https://pytorch.org/get-started/locally/

	Deep Q-Networks
	Double Deep Q-Networks (Advanced)

