
Reinforcement Learning @FAU
Summer Term 2023

Sebastian Rietsch, Nico Meyer, Christopher Mutschler
2023-06-02 – Due 2023-06-16

Policy-based Reinforcement Learning

1 Vanilla Policy Gradient (VPG)

In this exercise we will implement the VPG method. The idea of VPG in deep reinforcement learning is to
represent the policy using a deep neural network which is parameterized by its internal weights. Remember
that it is an on-policy method. The policy gradient w.r.t to the model parameters is defined as:

∇θJ(θ) = ∇θEπ[Qπ(s, a) lnπθ(a|s)]
= ∇θEπ[Gt lnπθ(a|s)]

Programming Tasks:

1. Network Architecture Similar to the last exercise about DQN it makes sense to begin with
defining the neural network architecture inside ActorNetwork. You can either decide to use a
torch.nn.softmax output layer and treat outputs directly as action probabilites, or work on logit
outputs.

Don’t get too fancy with your network. Even using two torch.nn.Linear layers with ReLU/Tanh
activation should converge quite nicely on easy environments like CartPole.

2. Transition Memory Even though it is not strictly necessary to do so, we will use a transition
memory to store experience episodes of the actor. This will make things cleaner and allow us to
expand the framework to more sophisticated methods in the next exercise.

(a) put expects an observation, action, reward and log-probability of the action taken and should
store them for later processing.

(b) finish_trajectory will be called once an episode is over. It should calculate the return at all
the timesteps of the episode using compute_returns and store them for later.

(c) get should return stored data in the form of five lists (observations, actions, rewards, log-
probabilities and returns).

(d) clear should delete all entries inside the transition memory.

3. Return Calculation Next up you will have to implement the compute_returns function, which
should yield returns for every timestep of an episode based on a list of rewards and the discount
factor γ. Remember that the return at timestep t of an episode is defined as Rt(τ) =

∑T
k=t γ

k−trk

4. Time for Action Continue with implementing the actors predict function.

First feed your observation through the actor network, yielding action probabilities or preference
logits.

Sample an action according to the probability distribution outputted by the actor network and
calculate the log probability for that action (Hint: PyTorch provides prebuilt distribution classes,
e.g. torch.distributions.Categorical for discrete actions). Return the action (as well as the log
probability if train_returns == True).

5. Loss Function Write code for the function calc_actor_loss which calculates the ”loss” function
(more objective function) as described above. (Hint: Because you can use the autograd capabilities
of PyTorch to compute your gradient you only have to calculate the expectation term. To compute
the gradient you can then use loss.backward()).

6. Training Loop Continue with implementing the training loop inside the VPG.learn function.

(a) Start by resetting the environment and saving the first observation into a variable.

(b) For every iteration, sample an action from your actor, take a step inside the environment with
that action and save the transition inside the TransitionMemory.

1



Reinforcement Learning @FAU
Summer Term 2023

Sebastian Rietsch, Nico Meyer, Christopher Mutschler
2023-06-02 – Due 2023-06-16

Figure 1: Sample reward plot we were able to achieve with our implementation on CartPole (hyperparam-
eters as provided in skeleton, Linear(128) → ReLU → Linear → ReLU NN architecture). The results are
strongly hyperparameter-related.

(c) Once you reach a terminal state reset your environment and finish the trajectory using the
finish_trajectory function of the TransitionMemory you previously implemented.

(d) Once you recorded enough episodes (see episodes_update attribute) calculate the loss and
optimize the ActorNetwork using PyTorch autograd. Note: Because VPG is an on-policy
method, transitions inside the memory can only be used for one optimization step.

2 Advantage Actor Critic (A2C)

Remember that the policy gradient is defined as:

∇θJ(θ) = Eπ[∇θ lnπθ(a|s)Qπ(s, a)].

The most basic actor-critic framework uses a critic to approximate the action-value function Qπ(s, a)
and applies its action-value estimates for calculating the policy gradient. In this exercise we will go one
step further.

Remember that, in order to reduce variance in the estimates of the gradient, it is mathematically sound
to subtract a baseline term from the policy gradient. It turns out that a reasonable choice for the baseline
term is the state-value function V π(x), which leads to the policy gradient formulation:

∇θJ(θ) = Eπ[∇θ lnπθ(a|s) (Qπ(s, a)− V π(s))]

= Eπ[∇θ lnπθ(a|s)Aπ(s, a)],

where Aπ(s, a) is the so-called advantage function. This function can be interpreted as the difference in
expected return when taking action a in state s compared to the expected return when following the policy
π in state s. Policy gradient methods that use this advantage function in its gradient calculations belong
to the family of advantage actor-critic methods.

Instead of approximating the two functions Qπ(s, a) and V π(s) or the advantage function Aπ(s, a) di-
rectly, common approaches use the critic to approximate the state-value function V π(s) and estimate the
advantage in one of the following ways:

1. Aπ(s, a) = R(s, a)− V π(x): MC advantage estimate, where R(s, a) is the return received in state s

2. Aπ(s, a) = r + γV π(s′) − V π(s): TD advantage estimate, often also in the form of a n-step TD
formulation

2



Reinforcement Learning @FAU
Summer Term 2023

Sebastian Rietsch, Nico Meyer, Christopher Mutschler
2023-06-02 – Due 2023-06-16

3. Aπ(s, a) =
∑T
l=0(γλ)lδt+l: Generalized advantage estimate (GAE) 1, where δt = rt+1 +γV π(st+1)−

V π(st) is the TD error. GAE is the average of all n-step TD advantages weighted by a discount
parameter λ.

In this exercise we will implement the advantage actor-critic method and focus on the 1. and 3. estimation
approach. The VPG implementation of last exercise can be naturally extended for this.

Another benefit when using a critic is that we can change the training loop to optimize the network
parameters after a fixed amount of steps performed in the environment (as compared to a fixed amount of
episodes in the VPG exercise), i.e. on partial trajectories. We can do this, because we can bootstrap the
value of the state the trajectory was terminated in using the critic.

Programming Tasks:

1. Network Architecture Similar to the last exercises it makes sense to begin with defining the
neural network architecture inside CriticNetwork. As state values can have positive or negative
sign the output layer has to be torch.nn.Linear.

2. Transition Memory Think about what additional information we need here.

3. Predict Function Expand the function to also calculate and return the value of the current obser-
vation to the training loop.

4. MC Advantage Write the function compute_advantages which estimates the MC advantage based
on a list of returns and state values.

5. Critic Loss Write the function calc_critic_loss, which computes the MC error (e.g. F.mse_loss)
between predicted state values and returns. Note: This is just for simplicity. You could also use
1-step or n-step TD error here.

6. Actor Loss Adjust the calc_actor_loss function to work on advantages instead of action-value
functions. Do you have to change anything?

7. Training Loop

(a) As in the last exercise, sample an action from your actor, take a step inside the environment
and save the transition inside the TransitionMemory

(b) Write code for the case that a terminal state has been reached (Hint: We don’t only optimize
when an episode is finished in this exercise)

(c) Write the optimization code, which should be executed when enough samples were collected to
fill the training batch (compare with self.batch_size). You will have to call finish_trajectory,
but this time provide the termination state value using the critic (don’t forget to call item(),
we don’t want to backpropagate from these outputs). Next, calculate actor and critic loss using
the function you wrote, and do the optimization step using the actor and critic optimizers.

8. GAE At this point your implementation should already work and be able to learn useful policies.
Now as a last step, write the compute_generalized_advantages function and use it instead of the
old MC method to estimate the state advantage function.

3 BONUS: Proximal Policy Optimizaton (PPO)

Last but not least, we want to extend the previous implementation by using a simple version of PPO with
advantage clipping, i.e. PPO-Clip. We only have to make some small changes:

Programming Tasks:

1. Transition Memory and Training Loop Only some minor changes are necessary.

2. Actor Loss Adjust the calc_actor_loss function to accommodate the advantage clipping for con-
servative policy updates introduced in the lecture.

3. Advanced Think about additional modification from the lecture that can be introduced to make
training more stable.

1Schulman et al., https://arxiv.org/abs/1506.02438

3


