

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Lecture 1: Introduction to RL

Christopher Mutschler

Opening Remarks Class Logistics

- We (will start with) use StudOn for main communication (forum + messages, announcements)
- If you have any questions, you can also write to

Christopher christopher.mutschler@iis.fraunhofer.de

Sebastian sebastian.rietsch@iis.fraunhofer.de Nico nico.meyer@iis.fraunhofer.de

If we will ever use a password somewhere, it will be FAU_RL_2023

Opening Remarks

Syllabus

Week	Lecture		Exercises		
1.	19.04.	Intro to RL, MDPs			
2.	26.04.	Dynamic Programming	28.04.	MDPs, DP	→ 05.07.
3.	03.05.	Model-free Prediction	05.05.	OpenAl Gym, TD-Learning	→ 12.05.
4.	10.05.	Model-free Control	12.05.	TD-Control	→ 19.05.
5.	17.05.	Value Function Approximation	19.05.	PyTorch, DQNs	→ 02.06.
6.	24.05.	Policy-based RL #1	26.05.		
7.	31.05.	Policy-based RL #2	02.06.	VPG, A2C, PPO	→ 16.06.
8.	07.06	Guest Lecture: Quantum Reinforcement Learning	09.06.		
9.	14.06.	Model-based RL #1 (Discrete Actions)	16.06.	MCTS	→ 23.06.
10.	21.06.	Model-based RL #2 (Continuous Actions)	23.06.	MPC, CEM	→ 30.06.
11.	28.06.	Exploration-Exploitation, Regret, Bandits	30.06.	Multi-armed Bandits	<i>→</i> 07.07.
12.	05.07.	Exploration in Deep RL, Intrinsic Motivation	07.07.	RND/ICM	→ 14.07.
13.	12.07.	Offline RL	14.07.	BCQ	\rightarrow 19.07. (lecture slot)
14.	19.07.	Guest Lecture: ChatGPT Course Wrap-Up, Evaluation Results			

Opening Remarks Syllabus

Tips & Tricks: How to be successful in this class

- Play with the Jupyter notebooks (if we provide them)
- Attend the classes, follow the content, and ask questions
- Attend the exercises and implement them

- ..one more thing
 - This is not a class to obtain 5 ECTS "as easy as it might be"

Opening Remarks Exam

- Currently, the plan is to have **a written** exam.
- Final scheduling and logistics of the exam will be done around June/July
 - Exam will (most likely) take place in the first examination period! (03.08.2023)
- The exams will cover topics from both lectures and exercises
 - Exams will focus on **basic understanding** of concepts
 - Exams will have theoretical parts (but we will not include proofs)
 - Exams will focus on **practical aspects** (i.e., implementation w.r.t. exercise content)
- Exam is in English (in the unlikely case of oral exams we can also do it in German)

https://www.menti.com

Opening Remarks

Prerequisites

- What pre-requisites do we expect?
 - Analysis/Calculus
 - Multivariate Statistics
 - Machine Learning, Deep Learning
 - Python (to get used to the exercises)
- How can you get them?

- Do not be so casual about it!

- You attended the recommended basic lectures: MLTS, Pattern Recognition, Deep Learning
- Or/And dive into one of those books (better today than tomorrow):

Kevin Murphy: Machine learning; a probabilistic perspective.

Christopher Bishop: Pattern Recognition and Machine Learning

lan Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning

• You will find RL literature in Lecture 1.02 (later today)

Playing games with RL

https://stable-baselines.readthedocs.io/en/master/guide/examples.html

https://www.youtube.com/watch?v=lc1fl5bdZdA

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Also watch the nice marketing video on AlphaGo: <u>https://www.youtube.com/watch?v=I2WFvGI4y8c</u>

Finding multi-agent soccer strategies with RL

https://www.youtube.com/watch?v=F8DcgFDT9sc

see also: https://github.com/google-research/football

Controlling robots with RL

https://www.youtube.com/watch?v=0JL04JJjocc

https://www.youtube.com/watch?v=W_gxLKSsSIE

Controlling robots with RL

Advanced robot control in simulation

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

https://www.youtube.com/watch?v=vppFvq2quQ0

Advanced robot control in reality

https://www.youtube.com/watch?v=x4O8pojMF0w

Advanced robot control in reality

Deep Drone Racing: Learning Agile Flight in Dynamic Environments

Elia Kaufmann*, Antonio Loquercio*, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun, Davide Scaramuzza

* contributed equally

https://www.youtube.com/watch?v=8RILnqPxo1s

https://www.youtube.com/watch?v=LikxFZZO2sk

Driving cars with RL

https://youtu.be/0IWjE_8xj6Q

Path planning/navigation

https://www.youtube.com/watch?v=H7Ym3DMSGms

https://www.youtube.com/watch?v=v5I-jPsAK7k

What are "autonomous systems"?

- Autonomous Agent (Simple Reflex Agent)
- An Autonomous Agent is **anything** that:
 - Perceives its environment via sensors
 - Acts on it with actuators
 - Operates without any interference (autonomously)

→ Percept & Act

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A Modern Approach. Malaysia; Pearson Education Limited.

What are "autonomous systems"?

- Intelligent (Utility-based) Agent
- An intelligent agent is **anything** that:
 - Perceives its environment via sensors
 - Acts on it with actuators
 - Operates without any interference (autonomously)
 - Directs its activity towards achieving goals or maximizing a utility function

→ Percept & Plan to Control

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A Modern Approach. Malaysia; Pearson Education Limited.

What are "autonomous systems"?

- Learning Agent
- A learning agent is **anything** that:
 - Perceives its environment via sensors
 - Acts on it with actuators
 - Operates without any interference (autonomously)
 - Learns how to better achieve goals or maximize a utility function
- → Percept & Learn to Control (not necessarily separate)

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A Modern Approach. Malaysia; Pearson Education Limited.

What are "autonomous systems"?

- Autonomous Cars
- Smart Homes/Buildings that adapt to occupants
- Intelligent traffic lights control
- Software trading agents
- Virtual assistants that manage appointments or answer emails automatically
- Recommender systems, e.g., for movies (Netflix), consumer products (Amazon), advertisements (Google), content (Facebook) or music (Spotify) recommendations
- Player Modelling and Content Generation in Computer Games

The RL Paradigm (reward hypothesis)

• Do you agree with following statement?

"All goals can be described by the maximization of expected cumulative **reward**."

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Goals for different applications

- Control a robot in the Gridworld
 - Getting to the treasure
 - Falling into traps
- Play videogames
 - Increasing the score
 - Decreasing the score
- Fly stunt maneuvers in a helicopter
 - Following desired trajectory
 - Crashing
- Humanoid walk
 - Forward motion
 - Falling over

http://ai.berkeley.edu/lecture_slides.html

RL vs the world: the many faces of Reinforcement Learning

see also: https://www.youtube.com/watch?v=-63ysqT5nu0

RL vs other ML branches

- No teacher/supervisor, only reward signals.
- Delayed feedback, not instantaneous (credit assignment problem).
- Learning by interaction between environment and agent over time.
- Agent's actions affect the environment: Actions have consequences!!!
 → non i.i.d.!
- Active Learning process: the actions that the agent takes affect the subsequent data the agent receives

see also: https://www.youtube.com/watch?v=-63ysqT5nu0

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)

How do data science techniques scale with amount of data?

https://towardsdatascience.com/why-deep-learning-isneeded-over-traditional-machine-learning-1b6a99177063

MACHINE LEARNING

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)

OPENAI IVI BOTOPENAI FIVECPUs60,000 CPU cores on
Azure128,000 preemptible CPU
cores on GCPGPUs256 K80 GPUs on Azure256 P100 GPUs on GCPExperience collected~300 years per day~180 years per day (~900
years per day counting
each hero separately)

https://blog.openai.com/openai-five/

https://ourworldindata.org/technological-progress

27

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)
 - Deep RL

https://ai.intel.com/reinforcement-learning-coach-intel/

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)
 - Deep RL
 - (Really good) Open Source Algorithm Implementations

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)
 - Deep RL
 - (Really good) Open Source Algorithm Implementations
 - You!

Literature

The RL Paradigm (revisited)

• Do you agree with following statement?

"All goals can be described by the maximization of expected cumulative **reward**."

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Challenges of sequential decision making

- Goal: select actions to maximize total future reward
- Actions may have long-term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - Financial investments
 - Refueling the helicopter
 - Game playing?

Challenges of understanding/adopting RL

Counter-Intuitive Visualization!!!

Supervised

Reinforcement Learning

Challenges of understanding/adopting RL

• Example: what went wrong here?

Challenges of understanding/adopting RL

• Example: what went wrong here?

Reinforcement Learning

http://ai.berkeley.edu/lecture_slides.html

Challenges of understanding/adopting RL

Idea: Saliency Maps

Challenges of understanding/adopting RL

Idea: explainable decision rules

Challenges of understanding/adopting RL

- Simple algorithms don't scale!!!
 - k-means → time-series clustering
 - Linear/polynomial regression → house/car pricing prediction
 - Tabular Q-Learning/SARSA \rightarrow very specialized applications

Myth vs. Reality

- AI is RL
 → NO! Many AI methods exist
- 2. RL can solve only games
 → NO! We will see several examples
- 3. RL is just "fancy" search
 - \rightarrow NO! We will compare to fancy search methods and see this
- 4. (Deep) RL can solve any problem, without any domain knowledge \rightarrow NO!

Myth vs. Reality

 Deep RL can solve anything vs Deep RL does not work (see https://www.alexirpan.com/2018/02/14/rl-hard.html)

NO and NO!

Bertsekas, 2019:

State of the art:

- Broadly applicable methodology: Can address a very broad range of challenging problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc
- There are no methods that are guaranteed to work for all or even most problems
- There are enough methods to try with a reasonable chance of success for most types of optimization problems
- Role of the theory: Guide the art, delineate the sound ideas

Overview

- Agent learns by interacting with an environment over many time-steps:
- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of an MDP (S, A, P, R, γ) :

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:

If the interaction does stop at some point in time (T) then we have an *episodic RL problem*.

- At each step t, the agent:
 - is at state S_t,
 - performs action A_t,
 - receives reward R_t.
- At each step t, the environment:
 - receives action A_t from the agent,
 - provides reward R_t,
 - moves at state S_{t+1},
 - increments time $t \leftarrow t + 1$.

- Markov Process (MP)
 - Description of an MP $(\mathcal{S}, \mathcal{P})$:

- Markov Process (MP)
 - Description of an MP $(\mathcal{S}, \mathcal{P})$:

	Home	Coffee	Chat	Computer
Home	60%	40%	0%	0%
Coffee	0%	10%	70%	20%
Chat	0%	20%	50%	30%
Computer	20%	20%	10%	50%

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Reward Process (MRP)
 - Description of an MRP $(\mathcal{S}, \mathcal{P}, \mathcal{R})$:
 - \mathcal{R} is a reward function:

 $\mathcal{R}_S = \mathbb{E}[R_{t+1} | S_t = s]$

	Home	Coffee	Chat	Computer
Home	1	1		
Coffee		1	2	3
Chat		1	-1	2
Computer	2	1	-3	5

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Decision Process (MDP)
 - Description of an MDP $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$:

- Markov Decision Process (MDP)
 - Description of an MDP $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$:
 - State transition model:
 - A state transition probability matrix \mathcal{P} helps to model the true state transition function $T(S_{t+1}|S_t, A_t)$ of a real-world environment.
 - For each action $A^i \in \mathcal{A}$, we have a state transition matrix \mathcal{P}^{A^i} at any time-step t

- Markov Decision Process (MDP)
 - Description of an MDP $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$:
 - State transition model:
 - A state transition probability matrix \mathcal{P} helps to model the true state transition function $T(S_{t+1}|S_t, A_t)$ of a real-world environment.
 - For each action $A^i \in \mathcal{A}$, we have a state transition matrix \mathcal{P}^{A^i} at any time-step t as follows:

$$\begin{bmatrix} \mathcal{P}_{11} & \cdots & \mathcal{P}_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix}$$

Notes:

- Rows sum up to 1.0.
- \mathcal{P} could change over time.

about the state space ${\mathcal S}$

• History is the sequence of observations, actions, rewards:

$$H_t = O_0, A_0, R_0, O_1, A_1, R_1, O_2, \dots, O_{t-1}, A_{t-1}, R_{t-1}, O_t$$

- 3 different definitions of s_t
 - (Full) Environmental state S^e_t
 - Private to the environment, not visible, maybe irrelevant information
 - Uses H_t to pick observation and reward

Agent state S^a_t (actually used)

- Private to the agent, history of observations, rewards, and actions
- Uses function of history $S_t^a = f(H_t)$ to select next action

Information state (we will define it soon)

Basically, S_t^a with special constraints in $f(H_t)$

about the state space ${\mathcal S}$

- Assumption of MDPs: Markov Property
 - A state S_t is Markov if and only if

 $\mathbb{P}[S_{t+1} \mid S_1, \dots, S_{t-1}, S_t] = \mathbb{P}[S_{t+1} \mid S_t]$

- Past states S₁, ..., S_{t-1} do not change the outcome for the next state S_{t+1}.
- The current state S_t captures all relevant information from the history.
- "The future is independent of the past given the present"

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- State is the information used to determine what happens next
 - Direct (fully observable): $O_t = S_t^e$
 - Indirect (partially observable): $O_t = f(S_t^e)$

about the state space $\ensuremath{\mathcal{S}}$

- Assumption of MDPs: Markov Property
 - How can we ensure/construct such a Markov state?

Sensor Measurements:

- Speed, Angle Requirements:
- Lateral acceleration
- Angular velocity

about the action space $\ensuremath{\mathcal{A}}$

• MDP example: Gridworld, episodic task

	Values
S	(x, y) with $x \in \{0, 1, 2, 3\}$ and $y \in \{0, 1, 2\}$
${\cal A}$	LEFT, RIGHT, UP, DOWN,

Markov Decision Processes (\mathcal{A})

about the action space $\ensuremath{\mathcal{A}}$

• MDP example: Cartpole, episodic or continuing task

	Values
S	$(x, heta, \dot{x}, \dot{ heta})$ with $x \in \mathbb{R}$ and $lpha \in [0^\circ, 360^\circ]$
${\cal A}$	LEFT, RIGHT

MDP example: Tetris, episodic task

MDP example: Running with a prosthetic leg, *episodic task*

- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of MDP (S, A, P, R, γ)
 - Recall: Actions have consequences!
 - Choosing an action $A^i \in \mathcal{A}$ for A_t at timestep t yields different reward sequences
 - How do we know which sequence to prefer?
 - Idea: Decay value of rewards over time.
 - γ is a discount factor: $\gamma \in [0,1]$

http://ai.berkeley.edu/lecture_slides.html

- We want to "solve" the MDP, by maximizing future rewards.
 - We see the episodes in the form of

$$S_0 \xrightarrow{(A_0, R_0)} S_1 \xrightarrow{(A_1, R_1)} S_2 \xrightarrow{(A_2, R_2)} S_3 \dots S_{t-1} \xrightarrow{(A_{t-1}, R_{t-1})} S_t$$

- **Question:** what happens if our problem never stops (i.e., $T = \infty$)?
 - Examples: data center cooling, recommender systems, etc.
- Total discounted (γ) reward (**return**) (of one sample)

$$G = R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + \dots = \sum_{t=0}^{\infty} \gamma^t R_t$$

• Markov Decision Process (MDP) is a tool to formulate RL problems

• Description of MDP (S, A, P, R, γ)

Why discount rewards with γ?

- Mathematically convenient to discount rewards (true reason).
- Avoids infinite returns in non-episodic problems
 - Datacenter cooling
 - Recommender system
- Uncertainty about the future may not be fully represented (model uncertainty, our model is not perfect).
- Can I use $\gamma = 1$?
 - Yes, if you have an episodic setting or you definitely know that there is a terminal absorbing state.
- Should I use $\gamma = 1$?
 - NO!

about the policy π

• Expected long-term value of state s:

$$v(s) = \mathbb{E}(G) = \mathbb{E}(R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + ... + \gamma^t R_t)$$

- Goal: maximize the expected return 𝔼(𝔅).
- We need a controller that helps us select the actions to maximize $\mathbb{E}(G)$!
- A policy π represents this controller:
 - π determines the agent's behavior, i.e., its way of acting
 - π is a mapping from state space \mathcal{S} to action space \mathcal{A}

 $\pi:\,\mathcal{S}\mapsto\mathcal{A}$

- Two types of policies:
 - Deterministic policy: $a = \pi(s)$.
 - Stochastic policy: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s].$
- New goal: find a policy that maximizes the expected return!

Some remarks about terminology

 $\mathbf{s}_t - \text{state}$ \mathbf{a}_t – action $r(\mathbf{s}, \mathbf{a})$ – reward function

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

 \mathbf{x}_t – state \mathbf{u}_t – action $c(\mathbf{x}, \mathbf{u}) - \text{cost function}$

Richard Bellman

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-2.pdf

Lev Pontryagin

Some remarks about terminology

Bertsekas, 2019:

RL uses Max/Value, DP uses Min/Cost

- Reward of a stage = (Opposite of) Cost of a stage.
- State value = (Opposite of) State cost.
- Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology

- Agent = Decision maker or controller.
- Action = Decision or control.
- Environment = Dynamic system.

Methods terminology

- Learning = Solving a DP-related problem using simulation.
- Self-learning (or self-play in the context of games) = Solving a DP problem using simulation-based policy iteration.
- Planning vs Learning distinction = Solving a DP problem with model-based vs model-free simulation.

