
Reinforcement Learning

—

Lecture 2: Dynamic Programming
Christopher Mutschler

Recap
Markov Decision Processes

§ Agent learns by interacting with an environment over many time-steps:
§ Markov Decision Process (MDP) is a tool to formulate RL problems

§ Description of an MDP 𝒮,𝒜,𝒫,ℛ, 𝛾 :

2

• At each step t, the agent:
• is at state S!,
• performs action A!,
• receives reward R!.

• At each step t, the environment:
• receives action A! from the agent,
• provides reward R!,
• moves at state S!"#,
• increments time t ← t + 1.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:
If the interaction does stop at some point in time
(𝑇) then we have an episodic RL problem.

Recap
Markov Decision Processes: about the policy 𝜋

§ Expected long-term value of state s:
𝑣 𝑠 = 𝔼 G = 𝔼 𝑅$ + 𝛾𝑅# + 𝛾%𝑅% + 𝛾&𝑅& + …+ 𝛾'𝑅'

§ Goal: maximize the expected return 𝔼(𝐆).

§ We need a controller that helps us select the actions to maximize 𝔼 𝐺 !

§ A policy 𝜋 represents this controller:
§ 𝜋 determines the agent’s behavior, i.e., its way of acting
§ 𝜋 is a mapping from state space 𝒮 to action space 𝒜

𝜋 ∶ 𝒮 ↦ 𝒜

§ Two types of policies:
§ Deterministic policy: 𝑎 = 𝜋(𝑠).
§ Stochastic policy: 𝜋 𝑎 | 𝑠 = ℙ 𝐴' = 𝑎 𝑆'= 𝑠].

§ New goal: find a policy that maximizes the expected return!

3

Overview

4

MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features

Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Bellman equation & Bellman’s principle of optimality

5

How to be optimal:
1. Take correct first action
2. Keep being optimal

http://ai.berkeley.edu/lecture_slides.html

Principle of Optimality:
„An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.“

(see Bellman, 1957, Chap. III.3.)

Dynamic Programming
Example

Example # 1 (Simplistic)
§ We need to go from our house to our work as fast as possible
§ Actions: Left, Right
§ Different actions lead to different road segments (e.g., highway, country road, etc.)
§ Reward: −𝑡 , where 𝑡 is the time needed for each road segment

6

Dynamic Programming

7

Dynamic Programming

8

10

1

3

5

4
3

4

1

7

6

Dynamic Programming

9

4

1

7

6

10

1

3

5

4
3

4

1

7

6

Dynamic Programming

10

10

3

5

4

3

4

1

7

6

7

11

1

4

1

7

6

Dynamic Programming

11

3

5

4

3

4

1

7

6

17

10

1

4

1

7

6

7

11

Dynamic Programming

12

10

3

5

4
3

4

1

7

6

17

𝑉(𝑠)

4

1

7

6

7

11

1

Dynamic Programming

Example #2 (Simplistic)

13

http://ai.berkeley.edu/lecture_slides.html

Dynamic Programming

Example #2 (Simplistic)

14

𝐷

𝐸

𝐹

?

P = 0.3

P = 0.7

7

6

𝑃 𝑠! = 𝐸, 𝑎 = 0, 𝑠 = D = 0.3
𝑃 𝑠! = 𝐹, 𝑎 = 0, 𝑠 = D = 0.7

Dynamic Programming

Example #2 (Simplistic)

15

𝐷

𝐸

𝐹

6.3

0.3 ⋅ 7 + 0.7 ⋅ 6

P = 0.3

P = 0.7

𝑃 𝑠! = 𝐸, 𝑎 = 0, 𝑠 = D = 0.3
𝑃 𝑠! = 𝐹, 𝑎 = 0, 𝑠 = D = 0.7

7

6

Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ state-value function 𝑉 for policy 𝜋

𝑠$
((*!),-(*,(*!) 𝑠#

((*"), -" 𝑠%
((*#), -# 𝑠&… 𝑠./#

((*$%"), -$%" 𝑠.

𝑉(𝑠 ≜ 𝑄(𝑠, 𝜋 𝑠 = 𝔼(H
'0$

1

𝛾'𝑟' | 𝑠$ = 𝑠

§ state-action-value function 𝑄 for policy 𝜋

𝑠$
2, -! 𝑠#

((3"), -" 𝑠%
((*#), -# 𝑠&… 𝑠./#

((*$%"), -$%" 𝑠.

𝑄(𝑠, 𝑎 = 𝔼(H
'0$

1

𝛾'𝑟' | 𝑠$ = 𝑠, 𝑎$ = 𝑎

16

Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Bellman Equation for 𝑉, given policy 𝜋

𝑠$
((*!),-(*,(*!) 𝑠#

((*"), -" 𝑠%
((*#), -# 𝑠&… 𝑠./#

((*$%"), -$%" 𝑠.

𝑉(𝑠 = 𝑟 𝑠, 𝜋(𝑠) + 𝛾 H
*&∈𝒮

𝒫 𝑠6 𝑠, 𝜋(𝑠)) 𝑉(𝑠′

17

subsequent steps
first step

7

6

𝐷 𝐸

𝐹

6.3

Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Bellman Equation for 𝑄, given policy 𝜋

𝑠$
2,-(*, 2)

𝑠#
((*"), -" 𝑠%

((*#), -# 𝑠&⋯𝑠./#
((*$%"), -$%" 𝑠.

𝑄(𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 H
*&∈𝒮

𝒫 𝑠6 𝑠, 𝑎)𝑄(𝑠′, 𝜋(𝑠6)

18

first step
subsequent steps

Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Bellman Optimality Equation for 𝑉

𝑠$
(∗ *! , -(*!, ((*!)) 𝑠#

(∗ *" , -" 𝑠%
(∗(*#), -# 𝑠&⋯𝑠./#

(∗(*$%"), -$%" 𝑠.
𝑉(∗ 𝑠 = max

2∈𝒜
𝑟 𝑠, 𝑎 + 𝛾 H

*&∈𝒮

𝒫 𝑠6 𝑠, 𝑎) 𝑉(∗ 𝑠′

19

subsequent steps
first step

Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Bellman Optimality Equation for 𝑄

𝑠
2, -(*, 2)

𝑠#
(∗(*"),-" 𝑠%

(∗(*#),-# 𝑠&⋯𝑠./#
(∗(*$%"),-$%" 𝑠.

𝑄(∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 H
*&∈𝒮

𝒫 𝑠6 𝑠, 𝑎)max
26∈𝒜

𝑄(∗ 𝑠′, 𝑎′

20

subsequent steps
first step

Dynamic Programming
Value Iteration

21

Dynamic Programming

MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

22

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example:
§ Noise = 0.2 (it is windy)
§ 𝛾 = 0.9
§ Living reward = 0.0

(Transitioning from state to state)

23

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

24

𝑉! 𝑆",$ = 1.00 (terminal state with reward 1.0)
𝑉! 𝑆$,$ = 0.00
𝑉! 𝑆!,$ = 0.00
…
𝑉! 𝑆",! = −1.00 (terminal state with reward -1.0)

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

25

http://ai.berkeley.edu/reinforcement.html

𝑉$ 𝑆$,$ = max
%∈𝒜

𝑎 = 𝑅: 0.8 ∗ 0.0 + 0.9 ∗ 1.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]
𝑎 = 𝐿: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]
𝑎 = 𝑈: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 1.0]
𝑎 = 𝐷: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 1.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]

= max
%∈𝒜

0.8 ∗ 0.9 ∗ 1.0 + 0.1 = 0.72
0

0.1 ∗ 0.9 ∗ 1.0 = 0.09
0.1 ∗ 0.9 ∗ 1.0 = 0.09

= 0.72

𝑉$ 𝑆$,! = ⋯

𝑦

𝑥

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

26

𝑉$ 𝑆$,$ = 0.72

𝑉$ 𝑆$,! = max
%∈𝒜

𝑎 = 𝑅: 0.8 ∗ 0.0 + 0.9 ∗ −1.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]
𝑎 = 𝐿: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]
𝑎 = 𝑈: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ −1.0]
𝑎 = 𝐷: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ −1.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]

= max
%∈𝒜

0.8 ∗ 0.9 ∗ −1.0 + 0.1 = −0.72
0

0.1 ∗ 0.9 ∗ −1.0 = −0.09
0.1 ∗ 0.9 ∗ −1.0 = −0.09

= 0.00

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

27

𝑉" 𝑆$,$ = max
%∈𝒜

𝑎 = 𝑅: 0.8 ∗ 0.0 + 0.9 ∗ 1.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.72 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]
𝑎 = 𝐿: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.72]
𝑎 = 𝑈: 0.8 ∗ 0.0 + 0.9 ∗ 0.72 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 1.0]
𝑎 = 𝐷: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 1.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]

= max
%∈𝒜

0.8 ∗ 0.9 ∗ 1.0 + 0.1 ∗ 0.9 ∗ 0.72 = 0.72 + 0.0648 ≈ 0.78
0.1 ∗ 0.9 ∗ 0.72 = 0.0648 ≈ 0.06

0.8 ∗ 0.9 ∗ 0.72 + 0.1 ∗ 0.9 ∗ 1.0 = 0.5184 + 0.09 ≈ 0.61
0.1 ∗ 0.9 ∗ 1.0 = 0.09

= 0.78

𝑉" 𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

28

𝑉" 𝑆$,$ = 0.78

𝑉" 𝑆$,! = max
%∈𝒜

𝑎 = 𝑅: 0.8 ∗ 0.0 + 0.9 ∗ −1.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.72 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]
𝑎 = 𝐿: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.72]
𝑎 = 𝑈: 0.8 ∗ 0.0 + 0.9 ∗ 0.72 + 0.1 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ [0.0 + 0.9 ∗ −1.0]
𝑎 = 𝐷: 0.8 ∗ 0.0 + 0.9 ∗ 0.0 + 0.1 ∗ 0.0 + 0.9 ∗ −1.0 + 0.1 ∗ [0.0 + 0.9 ∗ 0.0]

= max
%∈𝒜

0.8 ∗ 0.9 ∗ −1.0 + 0.1 ∗ 0.9 ∗ 0.72 = −0.72 + 0.0648 ≈ −0.65
0.1 ∗ 0.9 ∗ 0.72 = 0.0648 ≈ 0.06

0.8 ∗ 0.9 ∗ 0.72 − 0.1 ∗ 0.9 ∗ 1.0 = 0.5184 − 0.09 ≈ 0.43
0.1 ∗ 0.9 ∗ −1.0 = −0.09

= 0.43

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

29

𝑉(𝑆$,$ = ⋯
𝑉(𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

30

𝑉) 𝑆$,$ = ⋯
𝑉) 𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

31

𝑉* 𝑆$,$ = ⋯
𝑉* 𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

32

𝑉!! 𝑆$,$ = ⋯
𝑉!! 𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

33

𝑉!+! 𝑆$,$ = ⋯
𝑉!+! 𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = 0.0

34

𝑉!+! 𝑆$,$ = ⋯
𝑉!+! 𝑆$,! = ⋯

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝜸 = 𝟏, 𝑟 = 0.0
§ How would it look like?

35

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.0, 𝜸 = 𝟏, 𝑟 = 0.0
§ How would it look like?

36

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝒓 = −𝟎. 𝟏
§ How would it look like?

37

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #1: Value Iteration (convergence guaranteed)

𝑉8 𝑆9,: = max
2∈𝒜

H
*&∈ 𝒮, -

𝒫 𝑠6, 𝑟 𝑠, 𝑎) [𝑟 + 𝛾𝑉8/# 𝑠6]

§ Value Iteration Example: noise = 0.2, 𝛾 = 0.9, 𝑟 = −0.1
§ How would it look like?

38

𝑦

𝑥
http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Important: effect of environment noise and 𝛾

39

Goals:
• Close exit (Reward +1.0)
• Distant exit (Reward +10.0)

Avoid:
• Cliff on bottom (Reward -10.0)

http://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Important: effect of environment noise and 𝛾

40

Solution for:
• γ = 0.1
• Noise = 0.0
Behavior:
• Prefers close exit
• Avoids cliff: No
Why?
• Since noise = 0.0 there is no risk
• γ = 0.1 forces early terminationhttp://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Important: effect of environment noise and 𝛾

41

Solution for:
• γ = 0.1
• Noise = 0.5
Behavior:
• Prefers close exit
• Avoids cliff: Yes
Why?
• Since noise = 0.5 there is high risk
• γ = 0.1 forces early terminationhttp://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Important: effect of environment noise and 𝛾

42

Solution for:
• γ = 0.99
• Noise = 0.0
Behavior:
• Prefers distant exit
• Avoids cliff: No
Why?
• Since noise = 0.0 there is no risk
• γ = 0.99 allows for distant exithttp://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Important: effect of environment noise and 𝛾

43

Solution for:
• γ = 0.99
• Noise = 0.5
Behavior:
• Prefers distant exit
• Avoids cliff: Yes
Why?
• Since noise = 0.5 there is high risk
• γ = 0.99 allows for distant exithttp://ai.berkeley.edu/reinforcement.html

Dynamic Programming
Value Iteration

Hands-On:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

44

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Dynamic Programming
Policy Iteration

45

MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features

Dynamic Programming
Generalized Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?

𝜋∗ 𝑉∗

𝜋 𝑉
…

evaluation
𝑉 → 𝑉#

𝜋 → 𝑔𝑟𝑒𝑒𝑑𝑦 𝑉
improvement

𝑉 = 𝑉 #

𝜋 = 𝑔
𝑟𝑒𝑒𝑑

𝑦(𝑉)

𝑉∗
𝜋∗starting

𝑉, 𝜋

46

Dynamic Programming
Generalized Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration

§ Given a policy 𝜋:

1. Evaluate policy 𝜋 (Bellman Expectation Equation):

𝑉(𝑠 = 𝔼(𝑟$ + 𝛾𝑟# +⋯ | 𝑠' = 𝑠

2. Improve the policy by acting greedily with respect to 𝑉(:

𝜋6 = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑉()

47

Dynamic Programming
Generalized Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Greedy Policy Improvement over 𝑄

𝜋6 𝑠 = argmax
2 ∈𝒜

𝑄(𝑠, 𝑎

∀𝑠 ∈ 𝒮, 𝑄(& 𝑠, 𝜋6 𝑠 ≥ 𝑄(𝑠, 𝜋 𝑠

§ Greedy Policy Improvement over 𝑉

𝜋6 𝑠 = argmax
2 ∈𝒜

𝑟 𝑠, 𝑎 + 𝛾 H
*&∈𝒮

𝒫 𝑠6 𝑠, 𝑎) 𝑉(𝑠′

∀𝑠 ∈ 𝒮, 𝑉(& 𝑠6 ≥ 𝑉(𝑠6

48

Dynamic Programming
Generalized Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Greedy Policy Improvement over 𝑉

𝜋6 𝑠 = argmax
2 ∈𝒜

𝑟 𝑠, 𝑎 + 𝛾 H
*&∈𝒮

𝒫 𝑠6 𝑠, 𝑎) 𝑉(𝑠′

∀𝑠 ∈ 𝒮, 𝑉(& 𝑠6 ≥ 𝑉(𝑠6

49

7

6

𝐷 𝐸

𝐹

6.3

4

8

𝐷𝐺

𝐻

6.0

P = 0.3

P = 0.7

Action A Action B

P = 0.5

P = 0.5

Dynamic Programming:
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration

50

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

§ Undiscounted episodic MDP (𝛾 = 1)
§ Actions leading out of the grid leave state unchanged
§ Agent follows uniform random policy:

𝜋 𝑛| ⋅ = 𝜋 𝑒| ⋅ = 𝜋 𝑠 ⋅ = 𝜋 𝑤 ⋅ = 0.25

51

76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

terminal states
nonterminal states

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

52

𝑣$ for the
random policy

greedy policy
w.r.t. 𝑣$

random
policy𝑘 = 0

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

𝑘 = 1

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

policy

evaluation

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

53

𝑘 = 1

𝑘 = 2

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

54

𝑘 = 2

𝑘 = 3

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

55

𝑘 = 3

𝑘 = 10

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

optimal policy!

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

56

𝑘 = 10

𝑘 = ∞

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

optimal policy!

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

§ Iterative Policy Evaluation converges to 𝑉(

§ The converged greedy policy is guaranteed to be an improvement over the random policy
§ In this case (any greedy policies after the third iteration) are optimal policies

57

𝑘 = ∞

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration: Proof - Intuition

§ Is policy improvement making 𝜋6 better than 𝜋?
§ Assume that for some state 𝜋6 𝑠 = 𝑎 ≠ 𝜋(𝑠). Should we use the new policy? Is it better or is it worse?
§ How good is it to choose 𝑎 in 𝑠 and then keep on following 𝜋:

𝑄(𝑠, 𝑎 =̇ 𝔼 𝑟'"# + 𝛾𝑉(𝑠'"# |𝑠' = 𝑠, 𝑎' = 𝑎
𝑄(𝑠, 𝑎 =H

*&,-
𝒫 𝑠6, 𝑟|𝑠, 𝑎 𝑟 + 𝛾𝑉((𝑠6)

à If this is better, we would expect that using 𝑎 is always better when we are in 𝑠
à …and that the new policy would then in turn be a better one overall!

58

≥ 𝑉# 𝑠 ?

Dynamic Programming
Policy Iteration

§ Special case of the Policy Improvement Theorem
§ Let 𝜋 and 𝜋6 be any pair of deterministic policies such that

𝑄(𝑠, 𝜋6(𝑠) ≥ 𝑉(𝑠 , ∀ 𝑠 ∈ 𝒮

§ Then 𝜋6 must be as good as, or better than 𝜋, which means

𝑉(& 𝑠 ≥ 𝑉(𝑠 , ∀𝑠 ∈ 𝒮
§ Consider again the special case 𝜋6 𝑠 = 𝑎 ≠ 𝜋 𝑠 for exactly one 𝑠 ∈ 𝒮

(this is in line for the non-strict inequality formulation above)
§ Thus, if 𝑄(𝑠, 𝑎 > 𝑉(𝑠 then the changed policy is indeed better than 𝜋

𝑉(𝑠 ≤ 𝑄(𝑠, 𝜋6 𝑠
𝑉(𝑠 = 𝔼 𝑟'"# + 𝛾𝑉(𝑠'"# |𝑠' = 𝑠, 𝑎' = 𝜋6(𝑠)
𝑉(𝑠 = 𝔼(& 𝑟'"# + 𝛾𝑉(𝑠'"# |𝑠' = 𝑠
𝑉(𝑠 ≤ 𝔼(& 𝑟'"# + 𝛾𝑄(𝑠'"#, 𝜋6 𝑠'"# |𝑠' = 𝑠
𝑉(𝑠 ≤ 𝔼(& 𝑟'"# + 𝛾𝑟'"% + 𝛾%𝑄(𝑠'"%, 𝜋6 𝑠'"% |𝑠'"#, 𝑎'"# = 𝜋6(𝑠'"#)|𝑠' = 𝑠
𝑉(𝑠 …
𝑉(𝑠 ≤ 𝔼(& 𝑟'"# + 𝛾𝑟'"% +⋯ |𝑠' = 𝑠
𝑉(𝑠 = 𝑉(&(𝑠)

59

Note: a strict inequality
above leads to a strict
inequality below!

(see slide before)

(following from above

Dynamic Programming
Policy Iteration

§ Special case of the Policy Improvement Theorem
§ It is a natural extension to consider changes at all states and to all possible actions, in other words: to consider the new

greedy policy 𝜋6 given by:
𝜋6 𝑠 =̇ arg max

2
𝑄((𝑠, 𝑎)

𝜋6 𝑠 = arg max
2

𝔼 𝑟'"# + 𝛾𝑉(𝑠'"# |𝑠' = 𝑠, 𝑎' = 𝑎

𝜋6 𝑠 = arg max
2

H
*&,-
𝒫 𝑠6, 𝑟|𝑠, 𝑎 𝑟 + 𝛾𝑉((𝑠6)

§ Greedy policy takes action that looks best (with one-step lookahead) and by construction, the greedy policy meets the
policy improvement theorem (slide before)

§ Suppose that the new greedy policy 𝜋6 is as good as but not better than 𝜋:
𝑉(𝑠 = max

2
𝔼 𝑟'"# + 𝛾𝑉(

& 𝑠'"# |𝑠' = 𝑠, 𝑎' = 𝑎

𝑉(𝑠 = max
2
H

*&,-
𝒫 𝑠6, 𝑟|𝑠, 𝑎 𝑟 + 𝛾𝑉(&(𝑠6)

§ à This is the Bellman Optimality Equation; hence: 𝜋 = 𝜋6 = 𝜋∗

60

Dynamic Programming
Policy Iteration

§ How do we find optimal controllers for given (known) MDPs?
§ Optimal Solver #2: Policy Iteration

§ Final remarks:
1. We considered deterministic policies.

§ In the general case 𝜋 specifies probabilities 𝜋(𝑎|𝑠)
§ Everything seen so far can easily be extended to this

2. Do we need to evaluate upon convergence? à NO.
§ It is sufficient to execute one single sweep (instead of going to convergence)

§ Policy iteration breaks down to value iteration!

61

Dynamic Programming
Policy Iteration

Hands-On:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

62

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Dynamic Programming
Summary

§ Dynamic Programming (DP) methods to find optimal controllers
§ DP methods are guaranteed to find optimal solutions for Q and V in polynomial time (in number of states and actions)

and are exponentially faster than direct search
§ Policy Iteration computes the value function under a given policy to improve the policy while value iteration directly

works on the states
§ Perform sweeps through the state set
§ Implement the Bellman equation update
§ Use bootstrapping

63

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Backup Diagrams

Dynamic Programming
Summary

§ But are these simple algorithms usable?
§ LightLearn: personalized lighting control with Value Iteration and learned transition model

64

Park, J. Y., Dougherty, T., Fritz, H., & Nagy, Z. (2019). LightLearn: An adaptive and occupant centered controller for lighting based on
reinforcement learning. Building and Environment, 147, 397-414.

Dynamic Programming
Summary

§ But are these simple algorithms usable?
§ LightLearn: personalized lighting control with Value Iteration and learned transition model

65

Park, J. Y., Dougherty, T., Fritz, H., & Nagy, Z. (2019). LightLearn: An adaptive and occupant centered controller for lighting based on
reinforcement learning. Building and Environment, 147, 397-414.

Dynamic Programming
Summary

§ But are these simple algorithms usable?
§ Large-scale order dispatch in on-demand ride-hailing platforms

§ Problem: find the best matching between drivers and orders (e.g. Uber)
§ Available information: each taxi uploads occupancy status and location in central platform
§ Classical solution: during each short time slot (say one or two seconds), the platform’s decision center first collects all the

available drivers and active orders, and then matching is based on a combinatorial optimization algorithm.

66

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., ... & Ye, J. (2018, July). Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 905-913). ACM.

Dynamic Programming
Summary

§ But are these simple algorithms usable?
§ Large-scale order dispatch in on-demand ride-hailing platforms

§ Idea: design an order dispatch algorithm that optimizes the platform’s global efficiency in a long horizon (e.g., two or
three hours or a day), by formulating order dispatch as a large-scale sequential decision-making problem

67

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., ... & Ye, J. (2018, July). Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 905-913). ACM.

Dynamic Programming
Summary

§ But are these simple algorithms usable?
§ Large-scale order dispatch in on-demand ride-hailing platforms

§ Reward: the price of an order à Goal: maximize the Gross Merchandise Volume for the entire platform
§ Goal: Online planning: takes the learned value functions as inputs and determines the final matching between drivers

and orders in real-time

68

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., ... & Ye, J. (2018, July). Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 905-913). ACM.

Recap: Intro to Reinforcement Learning
Summary

§ The RL Paradigm (revisited):
§ Do you agree with following statement?

69

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

”All goals can be described by the
maximization of expected cumulative reward.”

thanks to @karpathy

Summary
References

§ Books:
§ Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
§ Bellman, R.E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. Republished 2003: Dover, ISBN 0-

486-42809-5.

§ Lectures:

§ UC Berkeley CS188 Intro to AI. http://ai.berkeley.edu/lecture_slides.html
§ UCL Course on RL. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
§ Advanced Deep Learning and Reinforcement Learning (UCL + DeepMind).

http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learni
ng

§ Blogs etc.:
§ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

70

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-486-42809-5
https://en.wikipedia.org/wiki/Special:BookSources/0-486-42809-5
http://ai.berkeley.edu/lecture_slides.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learning
http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learning

