Z Fraunhofer

IS

Fraunhofer-Institut flr Integrierte

Schaltungen 1IS

Reinforcement ning

% :
= —
s

Lecture 2: Dynami

Christopher Mutschler

Recap

Markov Decision Processes

Agent learns by interacting with an environment over many time-steps:
Markov Decision Process (MDP) is a tool to formulate RL problems
Description of an MDP (S, A,P,R,v):

’J Agent ll
state reward action

S, Rt At
R

. t+1
<+

S.. | Environment]4—

\

-+

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:
If the interaction does stop at some point in time
(T) then we have an episodic RL problem.

» At each step t, the agent:
* s at state S;,
 performs action Ay,

* receives reward R;.

» At each step t, the environment:
* receives action A; from the agent,
» provides reward Ry,
* moves at state Si;1,
e incrementstimet « t+ 1.

= Fraunhofer

s

Recap

Markov Decision Processes: about the policy m

Expected long-term value of state s:
v(s) = E(G) = E(Ry + YRy + Y?R, + y3R3 + ...+ y'R})
Goal: maximize the expected return E(G).

We need a controller that helps us select the actions to maximize E(G)!

A policy m represents this controller:
m determines the agent’s behavior, i.e., its way of acting
7 iS @ mapping from state space § to action space A

mT: S A

Two types of policies:
Deterministic policy: a = m(s).
Stochastic policy: m(a |s) =P[As =a| S;=s].

New goal: find a policy that maximizes the expected return!

\

5 ~ Fraunhofer

s

Overview

4 = Fraunhofer

s

Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Bellman equation & Bellman’s principle of optimality

()
Principle of Optimality:
,An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.”

(see Bellman, 1957, Chap. I1I.3.)
\ J

How to be optimal:
1. Take correct first action
2. Keep being optimal

|

http.://ai.berkeley.edu/lecture_slides.html

\

5 ~ Fraunhofer

s

Dynamic Programming

Example

Example # 1 (Simplistic)

= We need to go from our house to our work as fast as possible
= Actions: Left, Right

= Different actions lead to different road segments (e.g., highway, country road, etc.)
= Reward: —t , where t is the time needed for each road segment

N\

Fraunhofer

s

Dynamic Programming

N\

Fraunhofer

s

Dynamic Programming

N\

Fraunhofer

s

Dynamic Programming

Fraunhofer

s

Dynamic Programming

Z Fraunhofer

10

s

Dynamic Programming

Z Fraunhofer

11

s

Dynamic Programming

12

N\

Fraunhofer

s

Dynamic Programming

Example #2 (Simplistic)

http://ai.berkeley.edu/lecture_slides.html

\

'3 ~ Fraunhofer

s

Dynamic Programming

Example #2 (Simplistic)

P(s'"=E,|la=0,s=D)=0.3 E
P(s'"=F,la=0,s=D)=0.7

\

” ~ Fraunhofer

s

Dynamic Programming

Example #2 (Simplistic)

P(s'"=E,|la=0,s=D)=0.3 E
P(s'"=F,la=0,s=D)=0.7
D P=03
P=07
03-7+0.7-6

\

5 ~ Fraunhofer

s

Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
state-value function V for policy «

1(Sp),7(5,1(Sp)) m(s1), 11 (S2), T2 T(Sh-1), Th—1

So >S3 .. Sp—1 >Sh

S1

02) =B s
t=0

So

state-action-value function Q for policy

a, o m(51), 11 (S2), T2 T(Sh-1), Th—1
So > S1 > So —>53 e Sh—1 \Sh

QT[(S; Cl) -]En [z)/trt | So = S§,0p = a]
t=0

\

6 ~ Fraunhofer

s

Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Bellman Equation for V, given policy m

1(Sp),7(5,7(S0)) m(s1), 11 (S2), T2 T(Sh—1), Th—1

So '53 Sh—l

S1 Sh

So

V() = r(s,m(s) +y) Pl m() V)

. s'es

first step 4
subsequent steps

6.3

\

7 ~ Fraunhofer

s

Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Bellman Equation for Q, given policy

ar(s, a) m(s1), 11 T(S2), T2 T(Sh-1), Th—1
So — > S1 — Sz — 53 Sp—1 > Sh
Q™(s,a) =r(s,a) +vy Z P(s'|s,a) Q™(s', m(s"))
— s'es
first step

subsequent steps

\

8 ~ Fraunhofer

s

Dynamic Programming

= How do we fingd optimal cpntrollers for given (known) MDPs?
= Unfortunately, we need some definitions:
Bellman Optimality Equation for V

m*(So) (S0, (S0)) (1)1 m(s2), 72 7 (Sh-1), Th-1
S0 > S1 > S2 S3 " Sh-1 >Sh
VT (s) = max r(s,a) +vy Z P(s'|s,a) V™ (s
a
— s'es
first step

subsequent steps

\

10 ~ Fraunhofer

s

Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Bellman Optimality Equation for Q

ar(s,a) w(s)r1 T(S)r2 T (Sh—1)Th—1
> > >

S2 >S3 " Sp—1 >Sh

S S1

0™ (s,a) = r(s,a) + 1% z P(s'|s, a) max Q™ (s, a")

— s'es

first step
subsequent steps

\

20 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

L ——
21 ~ Fraunhofer

s
MMhvnamir Proarammina

Dynamic Programming

Value lteration

22

How do we find optimal controllers for given (known) MDPs?
Optimal Solver #1: Value Iteration (convergence guaranteed)

Value Iteration, for estimating 7 ~ .,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V (s), for all s € 8*, arbitrarily except that V' (terminal) = 0

Loop:

| A+0
| Loop for each s € 8:

| v+ V(s)

| V(s) < max,), ,.p(s',7|s,a) [r +V(s)]
| A +— max(A,|v —V(s)|)

until A < 6

Output a deterministic policy, m = 7, such that

m(s) = argmax, >, . p(s',r]s,a) [r + 7V (s')]

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

= Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
s'es,r
= Value Iteration Example:
Noise = 0.2 (it is windy)
y=0.9
Living reward = 0.0
(Transitioning from state to state)

> X

http://ai.berkeley.edu/reinforcement.html

0.8
0.14%»0.1
L'o<%>ro

8’0

2 ~ Fraunhofer

s

\

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V() =max " P(s',r15,0) [+ YVia (5]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

V1(5%2) = 1.00 (terminal state with reward 1.0)
V,(5%2) = 0.00
V,(S12) = 0.00

V1 (531) = —1.00 (terminal state with reward -1.0)

VALUES AFTER O ITERATIONS

http://ai.berkeley.edu/reinforcement.html

” ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
s'esS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

a=R:0.8x[0.0+09*1.0]+0.1 x[0.0+0.9 0.0] + 0.1 *[0.0+ 0.9 *0.0]

V,(522) = max] ¢ = L:0.8 % [0.0 + 0.9 % 0.0] + 0.1 % [0.0 + 0.9 * 0.0] + 0.1 = [0.0 + 0.9 * 0.0]
acA |a = U:0.8%[0.0 + 0.9 x 0.0] + 0.1 *[0.0 + 0.9 % 0.0] + 0.1 *[0.0 + 0.9 * 1.0]
a=D:0.8%[0.0+ 0.9 x0.0] + 0.1 *[0.0+ 0.9 = 1.0] + 0.1 *[0.0 + 0.9 x 0.0]

08+%09%1.0+40.1=0.72
_ 0 _
=MaXY 0.1%09+1.0 = 0.09 =0.72

0.1%0.9%*1.0=0.09
V,(§%1) = .-

http://ai.berkeley.edu/reinforcement.html

\

2 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V;(§*Y) = max z P(s',rls,a) [r +yVi—1(s")]
acA

s'esS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

V,(5%2) = 0.72
a=R:0.8%[0.0+0.9%—1.0]+ 0.1 «[0.0+ 0.9 *0.0] + 0.1 *[0.0 + 0.9 * 0.0]
V,(521) = max] &= L:0.8%[0.0 +0.9%0.0] + 0.1 *[0.0 + 0.9 % 0.0] + 0.1 * [0.0 + 0.9 x 0.0]
acA |a=U:0.8%[0.0+ 0.9 x0.0] + 0.1 *[0.0 + 0.9 *0.0] + 0.1 =[0.0 + 0.9 * —1.0]
a=D:0.8%[0.0+0.9*0.0] +0.1 *[0.0+ 0.9 *—1.0] + 0.1 * [0.0 + 0.9 *0.0]

08%0.9%—1.0+0.1=—0.72
_ 0 _
) 01%09%—1.0=—0.09 = 0.00

0.1%0.9*—-1.0 =-0.09

26

http://ai.berkeley.edu/reinforcement.html

\

~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

a=R:0.8x[0.0+09%1.0]+0.1 x[0.0+0.9 *0.72] + 0.1 *[0.0 + 0.9 * 0.0]
a=1L1:08x[0.0+09*0.0]+0.1 %[00+ 0.9 x0.0] + 0.1 *[0.0+ 0.9 0.72]
a=U:08%[0.0+0.9x0.72] + 0.1 *[0.0+0.9 *0.0] + 0.1 *[0.0+ 0.9 * 1.0]
a=D:0.8%[0.0+ 0.9 x0.0] + 0.1 *[0.0 + 0.9 % 1.0] + 0.1 *[0.0 + 0.9 x 0.0]

0.8%x09%1.0+0.1%x09%0.72=0.72+ 0.0648 =~ 0.78
— max 0.1%x0.9%0.72 = 0.0648 =~ 0.06 — 078
"~ aeA | 0.8%0.9%0.72+ 0.1%0.9+ 1.0 =0.5184+0.09 =~ 0.61 [

0.1%x0.9%1.0=0.09

2,2y —
V3(5%%) max

V3 (521 = .-

http://ai.berkeley.edu/reinforcement.html

\

27 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V;(§*Y) = max z P(s',rls,a) [r +yVi—1(s")]
acA

sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

V3(5%%) = 0.78
a=R:0.8%[0.0+0.9%—1.0]+ 0.1 «[0.0+ 0.9 *0.72] + 0.1 % [0.0 + 0.9 * 0.0]
Va(s21) = max] &= L:0.8%[0.0 + 0.9 % 0.0] + 0.1 *[0.0 + 0.9 % 0.0] + 0.1 * [0.0 + 0.9 * 0.72]
acA |a=U:0.8%[0.0+ 0.9 %0.72] + 0.1 *[0.0 + 0.9 x0.0] + 0.1 * [0.0 + 0.9 * —1.0]
a=D:08%[0.0+0.9=x0.0] + 0.1 *[0.0+ 0.9 x—1.0] + 0.1 * [0.0 + 0.9 = 0.0]

08%09%—-1.0+01%09=%0.72=-0.72 + 0.0648 =~ —0.65
— max 0.1%0.9%0.72 = 0.0648 = 0.06
acA 08%09%0.72—0.1%x09%1.0=0.5184—0.09 = 0.43
0.1+x09=+—-1.0=-0.09

= 0.43

28

http://ai.berkeley.edu/reinforcement.html

\

~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

V,(5%2) = ..
V,(§%1) = .

http://ai.berkeley.edu/reinforcement.html

29 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

Vs(§%2) = -
Vs(S%1) = -

VALUES AFTER 4 ITERATIONS

http://ai.berkeley.edu/reinforcement.html

\

30 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

Vg(§%2) = -
Ve(S%1) = -

http://ai.berkeley.edu/reinforcement.html

\

31 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

Vi1(8%%) = -
Vi1 (1) = -

http://ai.berkeley.edu/reinforcement.html

\

32 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
a
sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

Vip1(§%%) = -
Vip1(S§%1) = -

VALUES AFTER 100 ITERATIONS

33

http://ai.berkeley.edu/reinforcement.html

\

~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V;(§*Y) = max z P(s',rls,a) [r +yVi—1(s")]
acA

sleS, r
= Value Iteration Example: noise = 0.2, y =09, r = 0.0

Vip1(§%%) = -
Vip1(S§%1) = -

34

ERED
.-

Pl

s

Q-VALUES AFTER 100 ITERATIONS

> X

http://ai.berkeley.edu/reinforcement.html

\

~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
Optimal Solver #1: Value Iteration (convergence guaranteed)

V(5% = max Z P(s", 7| s,a) [r +yVi_1 (s)]
a
sleS, r

Value Iteration Example: noise = 0.2, y =1,r = 0.0
How would it look like?

VALUES AFTER 100 ITERATIONS

http://ai.berkeley.edu/reinforcement.html

\

35 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
Optimal Solver #1: Value Iteration (convergence guaranteed)

V(5% = max Z P(s", 7| s,a) [r +yVi_1 (s)]
a
sleS, r

Value Iteration Example: noise = 0.0,y =1, r = 0.0
How would it look like?

Ya

VALUES AFTER 100 ITERATIONS

http://ai.berkeley.edu/reinforcement.html

36 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
Optimal Solver #1: Value Iteration (convergence guaranteed)

V,(§%Y) = mezgl(E P(s',rls,a) [r +yVi—1(s")]
a
sleS, r

Value Iteration Example: noise = 0.2,y =09, r = -0.1
How would it look like?

Yy

VALUES AFTER 100 ITERATIONS

http://ai.berkeley.edu/reinforcement.html

\

57 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #1: Value Iteration (convergence guaranteed)

V(s =max > P(s'715,0) [+ YVia(s1)]
sleS, r
= Value Iteration Example: noise = 0.2, y = 0.9, r = —0.1
= How would it look like?

http://ai.berkeley.edu/reinforcement.html

= Fraunhofer

s

38

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= |Important: effect of environment noise and y

Goals:

II.. Avoid:
..-- e Cliff on bottom (Reward -10.0)
-

http://ai.berkeley.edu/reinforcement.html

\

30 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= |Important: effect of environment noise and y

nn 0.01 . Solution for:
m .n cy=0.1

* Noise = 0.0

Behavior:

 Prefers close exit

« Avoids cliff: No

Why?

* Since noise = 0.0 there is no risk
* v = 0.1 forces early termination

M

http://ai.berkeley.edu/reinforcement.html

\

40 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= |Important: effect of environment noise and y

Solution for:

c y=0.1

* Noise = 0.5

Behavior:

 Prefers close exit

« Avoids cliff: Yes

Why?

* Since noise = 0.5 there is high risk
* v = 0.1 forces early termination

http://ai.berkeley.edu/reinforcement.html

a ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= |Important: effect of environment noise and y

 Prefers distant exit

« Avoids cliff: No

Why?

* Since noise = 0.0 there is no risk
« v = 0.99 allows for distant exit

. . 51. B Solution for:
« vy=0.99

H. * Noise =0.0

H. . Behavior:

41»
5

. < ffeoff-

http://ai.berkeley.edu/reinforcement.html

\

42 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

= How do we find optimal controllers for given (known) MDPs?
= |Important: effect of environment noise and y

Solution for:

e v =0.99

* Noise = 0.5

Behavior:

 Prefers distant exit

« Avoids cliff: Yes

Why?

* Since noise = 0.5 there is high risk
« v = 0.99 allows for distant exit

http://ai.berkeley.edu/reinforcement.html

\

43 ~ Fraunhofer

s

Dynamic Programming
Value Iteration

Hands-On:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

4 = Fraunhofer

s

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Dynamic Programming
Policy Iteration

L ——
45 ~ Fraunhofer

s

Dynamic Programming
Generalized Policy Iteration

= How do we find optimal controllers for given (known) MDPs?

V* m — greedy(V)
starting
V,

7_[*4_ V*

\

45 ~ Fraunhofer

s

Dynamic Programming
Generalized Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration
Given a policy m:

Evaluate policy (Bellman Expectation Equation):
Ve(s) = Eg(ro+yri+ - |s¢=5)
Improve the policy by acting greedily with respect to V'™:

n' = greedy(V™)

47

\

~ Fraunhofer

s

Dynamic Programming
Generalized Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Greedy Policy Improvement over Q

n'(s) = argmax Q™ (s, a)
a€eA

Vs € S, Q"’(S,n'(s)) > Q"(s,n(s))

Greedy Policy Improvement over V

Z P(s'ls,a) V”(s’)}
s'es
VsES, VT (s")=VT(s")

n'(s) = argmax {r(s, a)+y
ac€eA

48

\

~ Fraunhofer

s

Dynamic Programming
Generalized Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Greedy Policy Improvement over V

n'(s) = argmax {r(s, a)+y z P(s'ls,a) V”(s’)}

€
agA s'es

VseS, VT (s")=V7(s")

Action A Action B

P=03

49 = Fraunhofer

s

Dynamic Programming:

Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration

50

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € §

. Policy Evaluation

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) « > o, p(s'7|s,7(s)) [r+V ()]
A + max(A, |v—V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement

policy-stable < true
For each s € 8:
old-action < m(s)
m(s) < argmax,), .p(s',r|s,a) [r + V()]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7m =~ 7,; else go to 2

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

Ry =—1

on all transitions

8 9 10 |11

actions

= Undiscounted episodic MDP (y = 1)
= Actions leading out of the grid leave state unchanged

= Agent follows uniform random policy:
n(n|-) =mn(e|) =n(s|) =nlw|-) =0.25

12 (13 [14

\

~ Fraunhofer

51
s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

v, for the greedy policy
random policy w.r.t. vy
0.0 0.0 0.0 0.0 i e i e
0.0 0.0/ 0.0 0.0 i
k = O » S S » :
0.0/ 0.0/ 0.0 0.0 S i md L

N
v

& 3 le S
< 7| 7

0.0{ 0.0 0.0 0.0

N
v
N
v

0.0[-1.0[-1.0[-1.0 -
-1.0]-1.0]-1.0]-1.0
-1.0/-1.0]-1.0]-1.0
-1.0]-1.0|-1.0] 0.0 I

—
<N
A 4
<N
A 4
N
A 4

N
v
N
v
N
v
-

N
v
N
v

52

random
policy

~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

0.0]-1.0]-1.0[-1.0 — [:: >[€ >
T ,“\,“\,“\
-1.0(-1.0|-1.0[-1.0 Tl
k : 1 » » »
—10 ‘10 ‘10 _10 (v) (v) (v) l
-1.0[-1.0]-1.0{ 0.0 ¢ :: >[¢ :: i
0.0[-1.7[-2.0]-2.0 < < ¢ :: i
-1.7]-2.0]-2.0(-2.0 e e :: 4
k = 2 T »
-2.0/-2.01-2.0]-1.7 T]
-2.0]-2.0(-1.7] 0.0 ‘—1:—’ e

53 ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

0.0]-1.7|-2.0[-2.0 — |« |4
L= 2 -1.7|-2.0-2.0]-2.0 I <—T |
2.0[-2.0[-2.0[-1.7 ~l
2.0[-2.0[-1.7] 0.0 | - -
0.0]-2.4|-2.9]-3.0 = = |9
B 2.4|-2.9]-3.0[-2.9 I
k=3 2.9]-3.0|-2.9(-2.4 I A
-3.0(-2.9-2.4 0.0 Ll - -

\

o4 ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

0.0]-2.4(-2.91-3.0 — | (_l
k=3 2.4{-2.9(-3.0|-2.9 (O
2.9|-3.0{-2.9|-2.4 Y| ol
-3.0|-2.9-2.4| 0.0 Ll 5| -
0.0[-6.1/-8.4/-9.0 R M -
(P
-6.1|-7.7|-8.4|-8.4 a |
k=10 T
-8.4|-8.4|-7.7|-6.1 ol
-9.0|-8.4|-6.1| 0.0 [N N N

\

i ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

0.0]-6.1[-8.4[-9.0 — = g
-6.1|-7.7|-8.4|-8.4 it e |
k=10 =
-8.4|-8.4|-7.7|-6.1 =l
-9.0(-8.4]-6.1] 0.0 L S5 S
0.0|-14.[-20.[-22. — = |q
-14.|-18.[-20.]-20. (S
k = o S
-20.]-20.]-18.|-14. ol
-22.1-20.-14.] 0.0 tyl = =

\

) ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration: Example for Policy Evaluation

0.0|-14.|-20.|-22. — |~ g
k= o -14.]-18.]-20.|-20. I

220.[-20.|-18.|-14. I A

22.]-20.]-14.] 0.0 Ll - -

= |terative Policy Evaluation converges to V™
= The converged greedy policy is guaranteed to be an improvement over the random policy
= |n this case (any greedy policies after the third iteration) are optimal policies

\

57 ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= QOptimal Solver #2: Policy Iteration: Proof - Intuition
s policy improvement making ' better than r?

Assume that for some state n'(s) = a # n(s). Should we use the new policy? Is it better or is it worse?

How good is it to choose a in s and then keep on following m:

Q"(s,a) = E[resq + YV (Se41)|Se = s,a¢ = a]
— z , P(s',rls,a)[r + yV™(s")]

s',r
|)

> VT(s) ?

- If this is better, we would expect that using a is always better when we are in s
- ...and that the new policy would then in turn be a better one overall!

58

\

~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= Special case of the Policy Improvement Theorem
Let m and 7" be any pair of deterministic policies such that

Q"(s,m'(s)) =V™(s), VsES
Then " must be as good as, or better than m, which means

ym (s) = V(s), Vs ES

Consider again the special case n’(s) = a # n(s) for exactlyones € §
(this is in line for the non-strict inequality formulation above)
Thus, if Q™(s,a) > V™(s) then the changed policy is indeed better than &

Ve(s) < Q"(s,m'(s))

V() =E [re41 + ¥V (ser1)Ise = s,a, = ' (s)]

VE(s) = Eprlreer + YV (Se41)lse = 5]

V() < Epr|resr + ¥Q™ (se41, 7' (Se41)) ISt = s]

Note: a strict inequality
above leads to a strict
inequality below!

Vi(s) < E, [Tt+1 + YT + VZQH(St+2»n’(5t+2))|5t+1rat+1 =1 (Ser1) |5t = S]

VT(s) ...
VE(s) < IEn’,[7"1:+1 + YTepp + o |sp = 5]
V() =V (s)

59

= Fraunhofer

s

Dynamic Programming
Policy Iteration

= Special case of the Policy Improvement Theorem

It is a natural extension to consider changes at all states and to all possible actions, in other words: to consider the new
greedy policy ' given by:
n'(s) = argmax Q™ (s,a)

a
n'(s) = argmax E[ryyq + yV™(St11)lse = 5,0, = a]
a

n'(s) = arg maXZ PG rls,a)[r + yV™(s")]
a shr

Greedy policy takes action that looks best (with one-step lookahead) and by construction, the greedy policy meets the
policy improvement theorem (slide before)

Suppose that the new greedy policy ' is as good as but not better than m:
VTE(s) = mC?XIE[rt+1 + YV (Ser1)lse = 5,0 = al

Ve(s) = maxz P(s',rls, a)[r + VVH’(S')]
a s'r

—> This is the Bellman Optimality Equation; hence: m = ' = n*

60 ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

= How do we find optimal controllers for given (known) MDPs?
= Optimal Solver #2: Policy Iteration

= Final remarks:
We considered deterministic policies.
In the general case m specifies probabilities m(al|s)
Everything seen so far can easily be extended to this

Do we need to evaluate upon convergence? - NO.
It is sufficient to execute one single sweep (instead of going to convergence)

Policy iteration breaks down to value iteration!

\

61 ~ Fraunhofer

s

Dynamic Programming
Policy Iteration

Hands-On:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

62 = Fraunhofer

s

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Dynamic Programming
Summary

= Dynamic Programming (DP) methods to find optimal controllers

DP methods are guaranteed to find optimal solutions for Q and V in polynomial time (in number of states and actions)

and are exponentially faster than direct search

Policy Iteration computes the value function under a given policy to improve the policy while value iteration directly

works on the states
Perform sweeps through the state set
Implement the Bellman equation update

Use bootstrapping

evaluation

Vs v
™ V
m ~ greedy(V)

improvement

Vs Tk

T s —b/v*

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

63

Backup Diagrams

L) ' I\I

/ \

\ ’
\ \

/

Q O () O (Q O Q) O 0
| \ ' \
\ " I

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

~ Fraunhofer

s

Dynamic Programming
Summary

= But are these simple algorithms usable?

= LightLearn: personalized lighting control with Value Iteration and learned transition model

Table 3

State definitions and rewards (note that P, is defined as both early morning and

late night).

Occupancy Switch Indoor light Period of day Reward
position levels
B P P, P
Occupied Off Dark 51 S6 s13 s -1
Comfort s s7 s14 s +1
Bl'ighl - S8 S15 522 +1
On Comfort S3 Sg S16 523 +1
Bright - S10 S17 S24 0
Unoccupied Off - S4 S;11 S18 S+ 1
On - S5 S12 S19 S26 -1

Indoor

Environment

©
e

RL - control agent

Building systems puAan

I 2

1 Building
I | Interaction
! 555y

I =
: |
! :
I - =
I I
I I

Park, J. Y., Dougherty, T., Fritz, H., & Nagy, Z. (2019). LightLearn: An adaptive and occupant centered controller for lighting based on

reinforcement learning. Building and Environment, 147, 397-414.

64

~ Fraunhofer

s

Dynamic Programming
Summary

= But are these simple algorithms usable?

= LightLearn: personalized lighting control with Value Iteration and learned transition model

Occipancy |s)vc'>lsllttcltn :ing(:;ol:vels State
Occupied Off Dark S13
Comfort S14

Bright $15

On Comfort 516

Bright S17

Unoccupied Off — 518
on - 519

Value

-0.900

1.068

1.100

1.069

0.039

0.980

-0.900

Start time of each state

State change triggers —p Occupant - daylight = controller

J’l

0923 0948 1027 1038 054 0S5 1233 1240 246 124 248 1500

Park, J. Y., Dougherty, T., Fritz, H., & Nagy, Z. (2019). LightLearn: An adaptive and occupant centered controller for lighting based on
reinforcement learning. Building and Environment, 147, 397-414.

65

\

~ Fraunhofer

s

Dynamic Programming
Summary

= But are these simple algorithms usable?
= Large-scale order dispatch in on-demand ride-hailing platforms
Problem: find the best matching between drivers and orders (e.g. Uber)
Available information: each taxi uploads occupancy status and location in central platform

Classical solution: during each short time slot (say one or two seconds), the platform’s decision center first collects all the
available drivers and active orders, and then matching is based on a combinatorial optimization algorithm.

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., ... & Ye, J. (2018, July). Large-scale order dispatch in on-demand ride-hailing

platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 905-913). ACM.

\

~ Fraunhofer

66
s

Dynamic Programming
Summary

= But are these simple algorithms usable?
= Large-scale order dispatch in on-demand ride-hailing platforms

Idea: design an order dispatch algorithm that optimizes the platform’s global efficiency in a long horizon (e.g., two or
three hours or a day), by formulating order dispatch as a large-scale sequential decision-making problem

Ty T, T, T3
So(To.X 54(Ty.X)
Online PlanningStep) (OMine Learning Step)
Historical data
Idle action: V(Sg) « V(Sg) + a(0 + yV(S,) - V(Sy) = @
2 - = R LN
To T, T, T @, LU W N

. FNEN
D/’\a KR lﬁ]@@'i- :

";‘:1 J "2 - "HMK" Valwe Functions
Serving action: V(Sp) « V(So) + a(R, + y*V(Sz) — V(So)) L i :\E L 2 J

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., ... & Ye, J. (2018, July). Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 905-913). ACM.

\

67 ~ Fraunhofer

s

Dynamic Programming
Summary

= But are these simple algorithms usable?
= Large-scale order dispatch in on-demand ride-hailing platforms
Reward: the price of an order = Goal: maximize the Gross Merchandise Volume for the entire platform

Goal: Online planning: takes the learned value functions as inputs and determines the final matching between drivers
and orders in real-time

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., ... & Ye, J. (2018, July). Large-scale order dispatch in on-demand ride-hailing
platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 905-913). ACM.

\

68 ~ Fraunhofer

s

Recap: Intro to Reinforcement Learning

Summary

= The RL Paradigm (revisited):

Do you agree with following statement?

state

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

69

’Aent'

reward
Rt

<

Rt+l

\ A

s

-

Sl+l

<

Environment]4—

"All goals can be described by the
maximization of expected cumulative reward.”

action
A,

/.

. . \.\w
e “yﬂ
I :

e

thanks to @karpathy W

Z Fraunhofer

s

Summary
References

= Books:
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Bellman, R.E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. Republished 2003: Dover, ISBN 0-
486-42809-5.

= |ectures:
UC Berkeley CS188 Intro to Al. http://ai.berkeley.edu/lecture slides.htm!|
UCL Course on RL. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Advanced Deep Learning and Reinforcement Learning (UCL + DeepMind).
http://www.cs.ucl.ac.uk/current students/syllabus/compai/compgi2?2 advanced deep learning and reinforcement learni

ng

= Blogs etc.:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

\

70 ~ Fraunhofer

s

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-486-42809-5
https://en.wikipedia.org/wiki/Special:BookSources/0-486-42809-5
http://ai.berkeley.edu/lecture_slides.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learning
http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learning

