
Reinforcement Learning

—

Lecture 4: Model-free Control
Christopher Mutschler

Let‘s play Kahoot!

2

Let‘s play Kahoot!

3

Recap

4

𝛾 = 1 𝛼 = 0.1

𝑉 𝑠! ← 𝑉 𝑠! + 0.1 𝑟!"# + 𝑉 𝑠!"# − 𝑉 𝑠!

𝑉 𝐴 ← 𝑉 𝐴 + 0.1 0 + 0 − 𝑉(𝐴 = 0.9𝑉 ⋅ 𝐴 = 0.45

Recap

5

𝛾 = 1 𝛼 = 0.1

What about
𝛼 = !

"($)
?

Recap

6

𝛾 = 1 𝛼 = 0.1

Recap

7

𝛾 = 1 𝛼 = 0.1

1. Value Iteration
2. e.g.: 𝑉 𝐷 = !

&
⋅ 𝑉 𝐶 + !

&
⋅ 𝑉(𝐸)

5 equations, 5 unknowns à solve:

𝑉 𝐸 =
𝑉 𝐷 + 𝑉(1)

2
𝑉 𝐷 =

𝑉 𝐶 + 𝑉(𝐸)
2

𝑉 𝐶 =
𝑉 𝐵 + 𝑉(𝐷)

2
𝑉 𝐵 =

𝑉 𝐴 + 𝑉(𝐶)
2

𝑉 𝐴 =
0 + 𝑉(𝐵)

2

Recap
Dynamic Programming

§ Dynamic Programming (DP) methods to find optimal controllers
§ DP methods are guaranteed to find optimal solutions for Q and V in polynomial time (in number of states and actions)

and are exponentially faster than direct search
§ Policy Iteration computes the value function under a given policy to improve the policy while value iteration directly

works on the states
§ Perform sweeps through the state set
§ Implement the Bellman equation update
§ Use bootstrapping

§ Require complete and accurate
model of the environment

§ Have limited applicability
in practice…
à as they need to know the dynamics of the environment!

8

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Recap
Monte Carlo and TD Methods

§ So far: We know our MDP model 𝒮,𝒜,𝒫,ℛ, 𝛾 .
§ Planning by using dynamic programming
§ Solve a known MDP

§ What if we don’t know the model, i.e., 𝒫 or ℛ or both?

§ We distinguish between 2 problems for unknown MDPs:

§ Model-free Prediction: Evaluate the future, given the policy 𝜋.
(estimate the value function)

§ Model-free Control: Optimize the future by finding the best policy 𝜋.
(optimize the value function)

9

Recap
Monte Carlo and TD Methods

§ Idea:
§ Use the samples to estimate the true V- and Q-value functions for the policy 𝜋

10

Given Policy

Randomly select state
and follow policy

&
Compute discounted
return for each state

Average the
values on each

state
https://medium.com/@zsalloum/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511

Remember:

Recap
Monte Carlo and TD Methods

§ TD(0) vs. MC Policy Evaluation
§ Goal: learn value function 𝑣! online from experience when we follow policy 𝜋

11

• Simplest TD learning algorithm: TD(0)
• Update value towards estimation *𝑮:

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼(*𝑮 − 𝑉 𝑠)
*𝑮 = 𝒓 + 𝜸𝑽 𝒔′ (estimated return)

• :𝐺 is called the TD target
• :𝐺 − 𝑉(𝑠) is called the TD error.

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

• Update 𝑉 𝑠 incrementally after each episode.
• For each state 𝑠 with actual return 𝑮:

𝑁 𝑠 ← 𝑁 𝑠 + 1 (just increment visit counter)

𝑉 𝑠 ← 𝑉 𝑠 + "
$ 𝑮 − 𝑉 𝑠 (update a bit à reduce error)

• In non-stationary problems, it can be useful to
track a running mean, i.e., forget old episodes:

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑮 − 𝑉 𝑠 .

Recap
Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ Bias/Variance Trade-Off
§ MC has high variance, but zero bias

§ Good convergence (even with FA)
§ insensitive to initialization (no bootstrapping), simple to understand

§ TD has low variance, but some bias
§ TD(0) converges to 𝜋%(𝑠) (be careful with FA: bias is a risk)
§ sensitive to initialization (because of the bootstrapping)
§ Usually more efficient in practice

12

DP Backup MC Backup TD Backup

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Recap
A Unified View of Prediction Algorithms

13

sampling

bootstrapping

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Overview

14

MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features

Q-Learning and SARSA Algorithms

§ The (model-free) control problem:
§ Given experience samples s(𝑠, 𝑎, 𝑟, 𝑠&)
§ Learn a close-to optimal policy 𝜋

§ Simple idea:
§ If we have calculated the value function for a given policy 𝜋 (e.g., from MC/TD policy evaluation from last week), we can

use it for deriving a better policy 𝜋′ through greedy policy improvement over 𝑉 𝑠

15

Policy Evaluation: Estimate 𝑉 = 𝑣'
e.g., Iterative Policy Evaluation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., Greedy Policy Improvement

𝑉 = 𝑉 '

𝜋 = 𝑔
𝑟𝑒𝑒𝑑

𝑦(𝑉)
𝑉∗
𝜋∗starting

𝑉, 𝜋

Q-Learning and SARSA Algorithms

§ The (model-free) control problem:
§ Given experience samples s(𝑠, 𝑎, 𝑟, 𝑠&)
§ Learn a close-to optimal policy 𝜋

§ Simple idea:
§ If we have calculated the value function for a given policy 𝜋 (e.g., from MC/TD policy evaluation from last week), we can

use it for deriving a better policy 𝜋′ through greedy policy improvement over 𝑉 𝑠

16

Policy Evaluation: Estimate 𝑉 = 𝑣'
e.g., Monte Carlo Policy Evaluation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., Greedy Policy Improvement

𝑉 = 𝑉 '

𝜋 = 𝑔
𝑟𝑒𝑒𝑑

𝑦(𝑉)
𝑉∗
𝜋∗starting

𝑉, 𝜋

Q-Learning and SARSA Algorithms

§ The (model-free) control problem:
§ Given experience samples s(𝑠, 𝑎, 𝑟, 𝑠&)
§ Learn a close-to optimal policy 𝜋

§ Simple idea:
§ If we have calculated the value function for a given policy 𝜋 (e.g., from MC/TD policy evaluation from last week), we can

use it for deriving a better policy 𝜋′ through greedy policy improvement over 𝑉 𝑠

𝜋& s = argmax
' ∈)

𝑅 𝑠, 𝑎 + 𝛾 G
$$∈*

𝑃(𝑠&|𝑠, 𝑎)𝑉!(𝑠&) , 𝑠 ∈ 𝑆, 𝑉!$ 𝑠 ≥ 𝑉!(𝑠)

§ Greedy policy improvement over 𝑄(𝑠, 𝑎) is model-free

𝜋& s = argmax
' ∈)

𝑄(𝑠, 𝑎)

17

Requires a

model!

Recap: Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ state-value function 𝑉 for policy 𝜋

𝑠
!($), .% 𝑆"

!(*&), .& 𝑆/
!(*'), .' 𝑆0… 𝑆12"

!(*()&), .()& 𝑆1

𝑉! 𝑠 ≜ 𝑄! 𝑠, 𝜋(𝑠) = 𝔼! G
345

6

𝛾3𝑅3 | 𝑆5 = 𝑠 .

§ state-action-value function 𝑄 for policy 𝜋

𝑠
', .% 𝑆"

!(*&), .& 𝑆/
!(*'), .' 𝑆0… 𝑆12"

!(*()&), .()& 𝑆1

𝑄! 𝑠, 𝑎 = 𝔼! G
345

6

𝛾3𝑅3 | 𝑆5 = 𝑠, 𝐴5 = 𝑎 .

18

Recap: Dynamic Programming

§ State-action-value function 𝑄 for policy 𝜋

19

𝑠
!, #7 𝑠$

%('8), #8 𝑠)
%('9), #9 𝑠*… 𝑠+,$

%(-:;8), #:;8 𝑠+

𝑄% 𝑠, 𝑎 = 𝔼% (
./0

1

𝛾.𝑟. | 𝑠0 = 𝑠, 𝑎0 = 𝑎

Recap: Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Bellman Equation for 𝑄, given policy 𝜋

𝑠
',ℛ($, ')

𝑠′
!($&), .& 𝑆/

!(*'), .' 𝑆0… 𝑆12"
!(*()&), .()& 𝑆1

𝑄! 𝑠, 𝑎 = ℛ 𝑠, 𝑎 + 𝛾 G
$$∈ 𝒮

𝒫 𝑠& 𝑠, 𝑎)𝑄! 𝑠′, 𝜋(𝑠&)

20

first step

subsequent steps

Recap: Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Bellman Optimality Equation for 𝑄

𝑠
', ℛ($, ')

𝑠′
!∗($&), .& 𝑆/

!∗(*'), .' 𝑆0… 𝑆12"
!∗(*()&), .()& 𝑆1

𝑄!∗ 𝑠, 𝑎 = ℛ 𝑠, 𝑎 + 𝛾 G
$$∈ 𝒮

𝒫 𝑠& 𝑠, 𝑎)max
'&∈𝒜

𝑄!∗ 𝑠′, 𝑎′

21

subsequent steps
first step

Recap: Dynamic Programming

22

10

3

5

4
3

4

1

7

6

17

𝑉(𝑠)

4

1

7

6

7

11

1

Recap: Dynamic Programming

23

10

3

5

4
3

4

1

7

6

17

𝑉(𝑠)

4

1

7

6

7

11

1

𝑄 𝑠!, 𝑙𝑒𝑓𝑡 = 17
𝑄 𝑠!, 𝑟𝑖𝑔ℎ𝑡 = 12

𝑄 𝑠&, 𝑙𝑒𝑓𝑡 = 7
𝑄 𝑠&, 𝑟𝑖𝑔ℎ𝑡 = 6

𝑄 𝑠*, 𝑙𝑒𝑓𝑡 = 11
𝑄 𝑠*, 𝑟𝑖𝑔ℎ𝑡 = 9

Recap: Dynamic Programming

24

10

3

5

4
3

4

1

7

6

17

𝑉(𝑠)

4

1

7

6

7

11

1

𝑄 𝑠!, 𝑙𝑒𝑓𝑡 = 17
𝑄 𝑠!, 𝑟𝑖𝑔ℎ𝑡 = 12

𝑄 𝑠&, 𝑙𝑒𝑓𝑡 = 7
𝑄 𝑠&, 𝑟𝑖𝑔ℎ𝑡 = 6

𝑄 𝑠*, 𝑙𝑒𝑓𝑡 = 11
𝑄 𝑠*, 𝑟𝑖𝑔ℎ𝑡 = 9

Recap: Dynamic Programming

§ How do we find optimal controllers for given (known) MDPs?
§ Unfortunately, we need some definitions:

§ Greedy Policy Improvement over 𝑄

𝜋& 𝑠 = argmax
' ∈𝒜

𝑄! 𝑠, 𝑎

∀𝑠 ∈ 𝒮, 𝑄!$ 𝑠, 𝜋& 𝑠 ≥ 𝑄! 𝑠, 𝜋 𝑠

§ Greedy Policy Improvement over 𝑉

𝜋& 𝑠 = argmax
' ∈𝒜

ℛ 𝑠, 𝑎 + 𝛾 G
$$∈ 𝒮

𝒫 𝑠& 𝑠, 𝑎) 𝑉! 𝑠′

∀𝑠 ∈ 𝒮, 𝑉!$ 𝑠& ≥ 𝑉! 𝑠&

25

Q-Learning and SARSA Algorithms

§ The (model-free) control problem:
§ Given experience samples s(𝑠, 𝑎, 𝑟, 𝑠&)
§ Learn a close-to optimal policy 𝜋

§ Simple idea:
§ If we have calculated the value function for a given policy 𝜋 (e.g., from MC/TD policy evaluation from last week), we can

use it for deriving a better policy 𝜋′ through greedy policy improvement over 𝑉 𝑠

26

Policy Evaluation: Estimate 𝑉 = 𝑣'
e.g., Monte Carlo Policy Estimation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., Greedy Policy Improvement

𝑉 = 𝑉 '

𝜋 = 𝑔
𝑟𝑒𝑒𝑑

𝑦(𝑉)
𝑉∗
𝜋∗starting

𝑉, 𝜋

Q-Learning and SARSA Algorithms

§ The (model-free) control problem:
§ Given experience samples s(𝑠, 𝑎, 𝑟, 𝑠&)
§ Learn a close-to optimal policy 𝜋

§ Simple idea:
§ If we have calculated the value function for a given policy 𝜋 (e.g., from MC/TD policy evaluation from last week), we can

use it for deriving a better policy 𝜋′ through greedy policy improvement over 𝑄 𝑠

27

Policy Evaluation: Estimate 𝑄 = 𝑞'
e.g., Monte Carlo Policy Evaluation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., Greedy Policy Improvement over 𝑄

𝑄 = 𝑞 '

𝜋 = 𝑔
𝑟𝑒𝑒𝑑

𝑦(𝑄)

𝑞∗
𝜋∗starting

𝑄, 𝜋

Q-Learning and SARSA Algorithms

§ Idea: your agent should not be afraid of trying something new J

thanks to @bomboclaater
28

Q-Learning and SARSA Algorithms
Exploration vs. Exploitation

29

https://medium.com/deep-math-machine-learning-ai/ch-12-1-model-free-reinforcement-learning-algorithms-monte-carlo-sarsa-q-learning-65267cb8d1b4

Q-Learning and SARSA Algorithms
Exploration vs. Exploitation

30

David Silver: Lectures on Reinforcement Learning. UCL Course on RL. 2015.

Q-Learning and SARSA Algorithms

§ Greedy policy improvement problems:
§ Executes the best action according to the estimated value function
§ Non-optimal initial choices may disorient exploration
§ Areas of the state space remain unexplored!

§ Solution: 𝜀-greedy exploration
§ Seems simplistic but very difficult to do better in practice!
§ Either take the best action or explore the action space
§ 𝜀 = “probability of exploration”

§ It can be proven that any 𝜀-greedy policy 𝜋& is an improvement over the 𝜀-greedy policy 𝜋, 𝑣!$(𝑠) ≥ 𝑣!(𝑠)
§ GLIE MC Control:

𝑁 𝑆3, 𝐴3 ← 𝑁 𝑆3, 𝐴3 + 1 𝑄 𝑆3, 𝐴3 ← 𝑄 𝑆3, 𝐴3 + "
*+,)+

𝐺3 − 𝑄 𝑆3, 𝐴3

§ Improve policy based on new action-value function (𝜀 ← "
?
, 𝜋 ← 𝜀-greedy(𝑄))

§ Converges to the optimal action-value function 𝑄 𝑆3, 𝐴3 → 𝑞∗(𝑠, 𝑎)

31

See “David Silver: Lectures on Reinforcement Learning. UCL Course on RL. 2015.”
Lecture 5 on Control, slide 12 for a proof on this

Q-Learning and SARSA Algorithms

§ The (model-free) control problem:
§ Given experience samples s(𝑠, 𝑎, 𝑟, 𝑠&)
§ Learn a close-to optimal policy 𝜋

§ Simple idea:
§ If we have calculated the value function for a given policy 𝜋 (e.g., from MC/TD policy evaluation from last week), we can

use it for deriving a better policy 𝜋′ through greedy policy improvement over 𝑄 𝑠

32

Policy Evaluation: Estimate 𝑄 = 𝑞'
e.g., Monte Carlo Policy Evaluation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., Greedy Policy Improvement over 𝑄

𝑄 = 𝑞 '

𝜋 = 𝑔
𝑟𝑒𝑒𝑑

𝑦(𝑄)

𝑞∗
𝜋∗starting

𝑄, 𝜋

Q-Learning and SARSA Algorithms

§ Greedy policy improvement problems:
§ Executes the best action according to the estimated value function
§ Non-optimal initial choices may disorient exploration
§ Areas of the state space remain unexplored!

§ Solution: 𝜀-greedy exploration

33

Policy Evaluation: Estimate 𝑄 = 𝑞'
e.g., Monte Carlo Policy Evaluation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., 𝜖-greedy Policy Improvement over 𝑄

𝑄 = 𝑞 '

𝜋 = 𝜖
−𝑔𝑟𝑒

𝑒𝑑𝑦(
𝑄)

𝑞∗
𝜋∗starting

𝑄, 𝜋

Q-Learning and SARSA Algorithms

§ Greedy policy improvement problems:
§ Executes the best action according to the estimated value function
§ Non-optimal initial choices may disorient exploration
§ Areas of the state space remain unexplored!

§ Solution: 𝜀-greedy exploration

34

Policy Evaluation: Estimate 𝑄 ≈ 𝑞'
e.g., Monte Carlo Policy Evaluation

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., 𝜖-greedy Policy Improvement over 𝑄

Every episode:𝑄 = 𝑞 '

𝜋 = 𝜀
−𝑔𝑟𝑒

𝑒𝑑𝑦(
𝑄)

𝑞∗
𝜋∗

starting
𝑄, 𝜋

Q-Learning and SARSA Algorithms

§ Greedy policy improvement problems:
§ Executes the best action according to the estimated value function
§ Non-optimal initial choices may disorient exploration
§ Areas of the state space remain unexplored!

§ Solution: 𝜀-greedy exploration

35

Policy Evaluation: Estimate 𝑄 ≈ 𝑞'
e.g., SARSA

Policy Improvement: Generate 𝜋(≥ 𝜋
e.g., 𝜖-greedy Policy Improvement over 𝑄

Every time step:𝑄 = 𝑞 '

𝜋 = 𝜀
−𝑔𝑟𝑒

𝑒𝑑𝑦(
𝑄)

𝑞∗
𝜋∗

starting
𝑄, 𝜋

Q-Learning and SARSA Algorithms
SARSA algorithm (on-policy control)

§ Apply TD to 𝑄(𝑠, 𝑎)
§ Use 𝜀-greedy policy improvement
§ Update at every time-step

36

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Q-Learning and SARSA Algorithms
SARSA algorithm (on-policy control)

§ Example: Windy Gridworld
§ Reward: -1 per time step; no discount

37

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Q-Learning and SARSA Algorithms
SARSA algorithm (on-policy control)

Pros & Cons
+ Processes each sample immediately
+ Minimal update cost per sample
- Poses constraints on sample collection (on-policy)
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits instabilities under approximate representations

- Requires careful handling on the policy greediness

38

Q-Learning and SARSA Algorithms
Q-Learning algorithm (off-policy control)

§ Evaluate one policy while following another
§ Can re-use experience gathered from old policies

39

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Q-Learning and SARSA Algorithms
Q-Learning algorithm (off-policy control)

Pros and Cons
+ Processes each sample immediately
+ Minimal update cost per sample
+ Poses no constraints on sample collection (off-policy)
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits instabilities under approximate representations

40

Q-Learning and SARSA Algorithms

§ Example: Cliff Walking
§ Every transition has reward of -1, falling off the

cliff gives a reward of -100 and ends the episode
§ No discounting
§ Assume we use 𝜀-greedy (0.1) for SARSA and Q-Learning,

no decay.

§ SARSA chooses the safe route, because SARSA
incorporates the current policy (𝜀-greedy)

§ Q-Learning chooses the optimal path
(and falls of the cliff using the 𝜀-greedy)

41

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Model-free Control: Remarks
Monte Carlo Control

§ We only studied TD-based control in this lecture.
§ Note: there is also an MC-based way to do control:

(see Sutton and Barto’s RL book pp. 97 – 103)

42

5.3. Monte Carlo Control 99

Monte Carlo ES (Exploring Starts), for estimating ⇡ ⇡ ⇡⇤

Initialize:
⇡(s) 2 A(s) (arbitrarily), for all s 2 S

Q(s, a) 2 R (arbitrarily), for all s 2 S, a 2 A(s)
Returns(s, a) empty list, for all s 2 S, a 2 A(s)

Loop forever (for each episode):
Choose S0 2 S, A0 2 A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0, following ⇡: S0, A0, R1, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless the pair St, At appears in S0, A0, S1, A1 . . . , St�1, At�1:
Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
⇡(St) argmax

a
Q(St, a)

Exercise 5.4 The pseudocode for Monte Carlo ES is ine�cient because, for each state–
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more e�cient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state–action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ⇤

In Monte Carlo ES, all the returns for each state–action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state–action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Off-policy vs. On-policy

Q-Learning vs. SARSA with greedy policy

Q-Learning vs. SARSA

§ Q-Learning estimates the return (total discounted future reward) for state-action pairs assuming a greedy policy (although it
may follow an explorative policy)

§ Instead, SARSA estimates the return for state-action pairs assuming the current policy (that it also follows)
§ If the current policy is also a greedy policy, then the distinction disappears.
§ SARSA will also get to the Q-Learning result if we decay 𝜀 (carefully!)

45

Q-Learning vs. SARSA

46

Q-Learning algorithm (off-policy control)
+ Processes each sample immediately
+ Minimal update cost per sample
+ Poses no constraints on sample collection (off-policy)
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits (even more) instabilities under approximate

representations

SARSA algorithm (on-policy control)
+ Processes each sample immediately
+ Minimal update cost per sample
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits instabilities under approximate representations
- Poses constraints on sample collection (on-policy)
- Requires careful handling on the policy greediness

Double Q-Learning

Double Q-Learning

Teaser: Alphastar

Challenge:
§ Game theory: many „good“ strategies
§ Imperfect information: crucial information is hidden
§ Long-term planning: early actions pay off much later
§ Real time: continual to game clock
§ Large action space: hierarchical action space

Solution:

§ Many nice tricks J
§ LSTMs, autoregressive policy heads with pointer

networks, multi-agent centralized value baselines, …
§ It is really about population modelling!

More Info:
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

49

References

Books:
§ Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
§ Bellman, R.E. 1957. Dynamic Programming. Princeton University Press.

Lectures:
§ UC Berkeley CS188 Intro to AI. http://ai.berkeley.edu/lecture_slides.html
§ UCL Course on RL. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
§ Advanced Deep Learning and Reinforcement Learning (UCL + DeepMind).

http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learning
§ Pieter Abbeel: CS 188 Introduction to Artificial Intelligence. Fall 2018

Blogs etc.:
§ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

50

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

