~ Fraunhofer

IS

Fraunhofer-Institut flr Integrierte
Schaltungen 1IS

Reinforcement Learnin

Lecture 4:

Christopher Mutschler

Let’s play Kahoot!

Kahoot)!

2 ~ Fraunhofer

s

Let’s play Kahoot!

—
eee [- < > 0 & kahoot.com G ¢ ® M + 88
3 O
Kahoot! ENEVEEN 00 School 62 Work (@ Home (& Study (& Academy AccessPass Explore conte Sign up Login (®eN
Make your team
e
Make lea rning superstar presenters
] - Set your whole team up to deliver
awesomeo awesome presentations with
/ Kahoot! 360 Spirit, our best plan
Kahoot! delivers engaging learning from only $16 per month.
to billions. ; ')
Learn more >
Sign up for free! ‘
Buy now
NEW! Create a branded
experience with Meet Kahoot! Kids!
Kahoot! themes Spark your child's curiosity for
Boost audience engagement by learning with our new playful app
customizing your kahoots for your experience.
work setting.
Get started today
Choose Kahoot! 360 Pro Max
(-
=
3 Fraunhofer

s

Recap

0.8 - Estimated
value 100
0.6 - 10
e \
0.4
True
values

0.2 4

0 | | | | |

A B G D E
State

0.25 -

.<L®<l> 0 e 0 Q 0 G 1 .

start

Empirical RMS error,
averaged over states

0.2 — ‘\\\\\“\a=.01
§ e V(s)) < V(se) + 0.1(rpsq + V(serr) = V(se))
.. ~_ MC
0.15 - v e V(A) « V(A)+0.1(0+0—V((A) = 0.9V - (4) = 0.45
I ot=0;f
0.1- —
a=.03
0.05 -
TD . a=.05
0 | | | |
0 25 50 75 100
Walks / Episodes

Ezercise 6.3 From the results shown in the left graph of the random walk example it
appears that the first episode results in a change in only V(A). What does this tell you
about what happened on the first episode? Why was only the estimate for this one state
changed? By exactly how much was it changed?

[l

= Fraunhofer

s

Recap
B—®—O~—0O-—0~——c—n

start

: N y=1 a=0.1
0.8 - Estimated 0.25 - Empirical RMS error,
value 100 N averaged over states
10 0.2 e S
0.6
(1’// \ ' 0.15 - What about
0.4 - 1)
True il a = !
values o g N(s)
0.2 4
0.05 -
TD . a=.05
0 T T T T 1 0 I [[|
A B C D E 0 25 50 75 100
State Walks / Episodes

Exercise 6.4 The specific results shown in the right graph of the random walk example
are dependent on the value of the step-size parameter, a. Do you think the conclusions
about which algorithm is better would be affected if a wider range of o values were used?
Is there a different, fixed value of a at which either algorithm would have performed
significantly better than shown? Why or why not? [

5 ~ Fraunhofer

s

Recap
B—®—O~—0O-—0~——c—n

start
: N y=1 a=0.1
0.8 - Estimated 0.25 - Empirical RMS error,
value 100 N averaged over states
10 0.2 - N < \\‘?f'Ol
0.6 -
(1) —— \ g 0.15-
S /
True 0.1-
values
0.2 4
0.05 -
TD . a=.05
0 T T | T 1 0 I [[|
A B C D E 0 25 50 75 100
State Walks / Episodes

*FEzercise 6.5 In the right graph of the random walk example, the RMS error of the
TD method seems to go down and then up again, particularly at high a’s. What could
have caused this? Do you think this always occurs, or might it be a function of how the
approximate value function was initialized? l

6 ~ Fraunhofer

s

Recap
B—®—O~—0O-—0~——c—n

start

y=1 a=0.1
0.8 Estimated — 0.25 - Empirical RMS error,
- value 100 - ol . averaged over states 1 Value Iteration
: _ 1, 1,
?// \ . T 2.e.9.:V(D) =-V(C) +5-V(E)
0.4
vz:Zs 0.1- 5 equations, 5 unknowns - solve:
0.2
0.05 -
D - — V(E) = V(D) +V(1)
0 T T | T 1 0 T I [i 2
A B C D E 0 25 50 75 100 V(C)+V(E)
State Walks / Episodes V(D) = 2
_ V(B) + V(D)
Ezercise 6.6 In Example 6.2 we stated that the true values for the random walk example V(C) = 2
are %, %, %, %, and %, for states A through E. Describe at least two different ways that V(A) +V(C)
these could have been computed. Which would you guess we actually used? Why? [l V(B) = 5
0+ V(B
V(A) — #

\

; ~ Fraunhofer

s

Recap

Dynamic Programming

Dynamic Programming (DP) methods to find optimal controllers

DP methods are guaranteed to find optimal solutions for Q and V in polynomial time (in number of states and actions)
and are exponentially faster than direct search

Policy Iteration computes the value function under a given policy to improve the policy while value iteration directly
works on the states

Perform sweeps through the state set
Implement the Bellman equation update
Use bootstrapping

Require complete and accurate
model of the environment

Have limited applicability
in praCtlce .. v, T imprO\./ement

- as they need to know the dynamics of the environment! ot

evaluation

Vs vy

%Yeedy W)
T = (PP e——

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

= Fraunhofer

s

Recap
Monte Carlo and TD Methods

= So far: We know our MDP model (§,A,P,R,v).
Planning by using dynamic programming
Solve a known MDP

= What if we don’t know the model, i.e., P or R or both?

= We distinguish between 2 problems for unknown MDPs:

Model-free Prediction: Evaluate the future, given the policy .
(estimate the value function)

Model-free Control: Optimize the future by finding the best policy .
(optimize the value function)

\

o ~ Fraunhofer

s

Recap
Monte Carlo and TD Methods Remember:

= |dea:
Use the samples to estimate the true V- and Q-value functions for the policy

Randomly select state
and follow policy
Given Policy |:> & |:> values on each
Compute discounted state
return for each state

Average the

https://medium.com/@zsalloum/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511

10 ~ Fraunhofer

s

Recap
Monte Carlo and TD Methods

= TD(0) vs. MC Policy Evaluation
Goal: learn value function v, online from experience when we follow policy

« Simplest TD learning algorithm: TD(0) » Update V(s) incrementally after each episode.
« Update value towards estimation G: * For each state s with actual return G:

V(S) «— V(S) + a(G V(S)) N(S) «— N(S) + 1 (just increment visit counter)

G =7r+4+ YV(S) (estimated return) V(S) «— V(S) + m (G — V(S)) (update a bit = reduce error)
« G is called the TD target * In non-stationary problems, it can be useful to
« G —V(s)is called the TD error. track a running mean, i.e., forget old episodes:

V(s) «V(s)+ a(G—V(s)).

|
NewEstimate < OldEstimate + StepSize [Target — OldEstimate]

\

» ~ Fraunhofer

s

Recap
Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
Bias/Variance Trade-Off
MC has high variance, but zero bias
Good convergence (even with FA)
insensitive to initialization (no bootstrapping), simple to understand
TD has low variance, but some bias
TD(0) converges to m,(s) (be careful with FA: bias is a risk)
sensitive to initialization (because of the bootstrapping)
Usually more efficient in practice

DP Backup MC Backup TD Backup

V(St) = Er [Rep1 +7V(Ser1)]

V(St) = V(St) + a(Gr — V(St)) V(Se) = V(Se) + a (Rep1 +7V(Ser1) = V(St)

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

12 ~ Fraunhofer

s

Recap
A Unified View of Prediction Algorithms

width
of update

Dynamic

OA /0\ programming
ore)

Temporal- ?
difference
learning O

sampling

/O\ Exhaustive

- search
o - /O\ o

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

bootstrapping

13

~Z Fraunhofer

s

Overview

L ——
” ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= The (model-free) control problem:
Given experience samples s(s,a,r,s")
Learn a close-to optimal policy
= Simple idea:
If we have calculated the value function for a given policy m (e.g., from MC/TD policy evaluation from last week), we can
use it for deriving a better policy 7’ through greedy policy improvement over V(s)

Estimate V = v,
e.g., lterative Policy Evaluation

starting

T Generatent' >«
V,

e.g., Greedy Policy Improvement

\

5 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= The (model-free) control problem:
Given experience samples s(s,a,r,s")
Learn a close-to optimal policy
= Simple idea:
If we have calculated the value function for a given policy m (e.g., from MC/TD policy evaluation from last week), we can
use it for deriving a better policy 7’ through greedy policy improvement over V(s)

Estimate V = v,

starting

T Generatent' >«
V,

e.g., Greedy Policy Improvement

\

6 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= The (model-free) control problem:
Given experience samples s(s,a,r,s")
Learn a close-to optimal policy
= Simple idea:
If we have calculated the value function for a given policy m (e.g., from MC/TD policy evaluation from last week), we can
use it for deriving a better policy 7’ through greedy policy improvement over V(s)

T[,(S) = arggiélfqi{R(S; a) +y z P(S’lS, a)Vn(S’)}'S €S, Vn,(s) = VT[(S) ““Gs 2
s'es RGQ de\\‘
«\O

Greedy policy improvement over Q(s, a) is model-free

n'(s) = arg max Q(s,a)

\

7 ~ Fraunhofer

s

Recap: Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:

state-action-value function Q for policy @

a, Ro (51), R1 1(52), Rz T(Sh—-1), Rh—1
S—> S ———> Sy ———553... Sp_4 >

Sh

QTI(S, a) =]ET[[Z tht | SO = S,AO =ajl.
t=0

\

5 ~ Fraunhofer

s

Recap: Dynamic Programming

= State-action-value function Q for policy m

a, o m(S1), 11 (S2), 12 T(Sh—1), Th—1
S—> § —— S; ——S3... Sp_1q > Sh

QT[(S, Cl) = IETL' lz)/tTt | So = S,0g = a]
t=0

VALUES AFTER 100 ITERATIONS O-VALUES AFTER 100 ITERATIONS

\

10 ~ Fraunhofer

s

Recap: Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Bellman Equation for Q, given policy m

aR(s,a) , m(sr),Ry m(S2), Ry m(Sh-1), Rh-1
S > S > S — 53 Spq >Sh
Q™(s,a) = R(s,a) +y z P(s'ls,a) Q™ (s, m(s"))

s'esS

first step

subsequent steps

20

\

~ Fraunhofer

s

Recap: Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Bellman Optimality Equation for Q

a, R(s,a) *(s"), Ry *(S2), Ry m*(Sp-1), Rh—1
A ’ AN S AN
> S > D02 T 293 Oh-1 ?

S Sh

Q”*(s, a) =R(s,a) +vy E P(s'|s, a) meaﬁ Qn*(S', a’)
al
s'es

first step

subsequent steps

\

21 ~ Fraunhofer

s

Recap: Dynamic Programming

22

Z Fraunhofer

s

Recap: Dynamic Programming

Q(sy, left) =7
Q(Szrright) %D 2
3
Q(sqy, left) = 17 5
Q(sq,right) = 12 \@
10 1

:

V(s) /Qng,left) =11 6

Q(s3,right) =9
23 ~ Fraunhofer

s

\

Recap: Dynamic Programming

Q(sy, left) =7
Q(Szrright) =6/@ n
3
Q(sqy, left) = 17 5
Q(sq,right) = 12 \@
10 1

:

V(s) /QZSg,left) =11 6

Q(s3,right) =9
24 ~ Fraunhofer

s

\

Recap: Dynamic Programming

= How do we find optimal controllers for given (known) MDPs?
= Unfortunately, we need some definitions:
Greedy Policy Improvement over Q

n'(s) = argmax Q™ (s,a)
ac€eA

Vs € S, Q”’(s,n’(s)) > Q™(s,m(s))

\

2 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= The (model-free) control problem:
Given experience samples s(s,a,r,s")
Learn a close-to optimal policy
= Simple idea:
If we have calculated the value function for a given policy m (e.g., from MC/TD policy evaluation from last week), we can
use it for deriving a better policy 7’ through greedy policy improvement over V(s)

Estimate V = v,

starting

T Generatent' >«
V,

e.g., Greedy Policy Improvement

\

2 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= The (model-free) control problem:
Given experience samples s(s,a,r,s")
Learn a close-to optimal policy
= Simple idea:
If we have calculated the value function for a given policy m (e.g., from MC/TD policy evaluation from last week), we can
use it for deriving a better policy ©’ through greedy policy improvement over

Estimate
e.g.,

starting
Q,m

Generatenn' >«
e.g.,

\

27 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= |dea: your agent should not be afraid of trying something new ©

thanks to @bomboclaater W Z Fraunhofer

s

28

Q-Learning and SARSA Algorithms

Exploration vs. Exploitation

https://medium.com/deep-math-machine-learning-ai/ch-12-1-model-free-reinforcement-learning-algorithms-monte-carlo-sarsa-q-learning-65267cb8d1b4

29 = Fraunhofer

s

Q-Learning and SARSA Algorithms

Exploration vs. Exploitation

m There are two doors in front of you.

m You open the left door and get reward 0
V(left) =0

m You open the right door and get reward +1
V(right) = +1

m You open the right door and get reward +3

V(right) = +2
m You open the right door and get reward +2
V(right) = 42

“Behind one door is tenure - behind the other
is flipping burgers at McDonald's.”

m Are you sure you've chosen the best door?

David Silver: Lectures on Reinforcement Learning. UCL Course on RL. 2015.

\

30 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= Greedy policy improvement problems:
Executes the best action according to the estimated value function
Non-optimal initial choices may disorient exploration
Areas of the state space remain unexplored!
= Solution: e-greedy exploration
Seems simplistic but very difficult to do better in practice!

Either take the best action or explore the action space B oy e oo 9 Uk Course on RL. 2015
¢ = "probability of exploration” }

It can be proven that any e-greedy policy =’ is an improvement over the e-greedy policy , v,/ (s) = v (s)

= GLIE MC Control:

1
N(St,At)

N(Sp, Ap) « N(Sp, A + 1 Q(Sp, Ap) « Q(Sp, Ap) + (G — Q(St, Ap)

Improve policy based on new action-value function (& « %,n « e-greedy(Q))

Converges to the optimal action-value function Q(Sg, Ar) = q.(s, a)

\

31 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= The (model-free) control problem:
Given experience samples s(s,a,r,s")
Learn a close-to optimal policy
= Simple idea:
If we have calculated the value function for a given policy m (e.g., from MC/TD policy evaluation from last week), we can
use it for deriving a better policy ©’ through greedy policy improvement over

Estimate
e.g.,

starting
Q,m

Generatenn' >«
e.g.,

\

32 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= Greedy policy improvement problems:
Executes the best action according to the estimated value function
Non-optimal initial choices may disorient exploration
Areas of the state space remain unexplored!

= Solution:

Estimate
e.g.,

starting
, 1T

Generatenn' >«
e.g.,

\

33 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= Greedy policy improvement problems:
Executes the best action according to the estimated value function
Non-optimal initial choices may disorient exploration
Areas of the state space remain unexplored!

= Solution:

starting e.g.,

e.g.,

34

Estimate

Generatent' >«

\

~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= Greedy policy improvement problems:
Executes the best action according to the estimated value function
Non-optimal initial choices may disorient exploration
Areas of the state space remain unexplored!

= Solution:

starting e.g.,

e.g.,

35

Estimate

Generatent' >«

\

~ Fraunhofer

s

Q-Learning and SARSA Algorithms
SARSA algorithm (on-policy control)

= Apply TD to Q(s, a) ® s
= Use e-greedy policy improvement o
= Update at every time-step <>
S’
Sarsa (on-policy TD control) for estimating @ ~ ¢,
@

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) « Q(S, A) + a[R +Q(S', &) — Q(S, A)]
S« S A A,
until S is terminal

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

= Fraunhofer

s

36

Q-Learning and SARSA Algorithms
SARSA algorithm (on-policy control)

= Example: Windy Gridworld
Reward: -1 per time step; no discount

170
150 -
S' ' ~ - - i G ioo4 |} [| |
Eplsodes 00 01 112 210
50
g 0 9 1 1 1 2 2 1 10 0
0 1000 2000 3000 4000 5000 6000 7000 8000
' Time steps
standard
moves

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

37 ~ Fraunhofer

s

Q-Learning and SARSA Algorithms
SARSA algorithm (on-policy control)

38

Pros & Cons

+

+

Processes each sample immediately

Minimal update cost per sample

Poses constraints on sample collection (on-policy)
Requires a huge number of samples

Requires careful schedule for the learning rate

Makes minimal use of each sample

The ordering of samples influences the outcome
Exhibits instabilities under approximate representations
Requires careful handling on the policy greediness

\

~ Fraunhofer

s

Q-Learning and SARSA Algorithms

Q-Learning algorithm (off-policy control)

= Evaluate one policy while following another
= Can re-use experience gathered from old policies I

Q-learning (off-policy TD control) for estimating 7 ~ 7. e 0 o

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]
S+ S

until S is terminal

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

~ Fraunhofer

s

39

Q-Learning and SARSA Algorithms

Q-Learning algorithm (off-policy control)

40

Pros and Cons

+ Processes each sample immediately

+ Minimal update cost per sample

+ Poses no constraints on sample collection (off-policy)
- Requires a huge number of samples

- Requires careful schedule for the learning rate

- Makes minimal use of each sample

- The ordering of samples influences the outcome

- Exhibits instabilities under approximate representations

\

~ Fraunhofer

s

Q-Learning and SARSA Algorithms

= Example: Cliff Walking

Every transition has reward of -1, falling off the
cliff gives a reward of -100 and ends the episode

No discounting
Assume we use e-greedy (0.1) for SARSA and Q-Learning,
no decay.

= SARSA chooses the safe route, because SARSA
incorporates the current policy (e-greedy)

= Q-Learning chooses the optimal path
(and falls of the cliff using the e-greedy)

M

R=-1

Safer path
Optimal path ' +
S The Cliff G
R=-100
Sarsa
25
Sum of -50 -
rewards Q-learning
during
episode . |
-100 T T T T 1
0 100 200 300 400 500
Episodes

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

~ Fraunhofer

s

Model-free Control: Remarks
Monte Carlo Control

= We only studied TD-based control in this lecture.

= Note: there is also an MC-based way to do control:
(see Sutton and Barto’s RL book pp. 97 — 103)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

Initialize:
7(s) € A(s) (arbitrarily), for all s € §
Q(s,a) € R (arbitrarily), for all s € 8§, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ag € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ag, following w: Sy, Ag, R1,...,S57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—1,T—-2,...,0:
G < vG + Ry
Unless the pair Sy, A; appears in Sy, Ao, S1, A1 ...,5:_1,Ar_1:
Append G to Returns(St, A)
Q(St, Ar) + average(Returns(St, At))
7(St) < argmax, Q(S, a)

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

42 ~ Fraunhofer

s

Off-policy vs. On-policy

Ezxercise 6.11 Why is Q-learning considered an off-policy control method? O

\

~ Fraunhofer

s

Q-Learning vs. SARSA with greedy policy

Q-learning (off-policy TD control) for estimating 7 ~ 7.,

Sarsa (on-policy TD control) for estimating @ ~ g,

Al'g(')ri'thm parameters: step size a € (0, 1], small €= 0 . Algorithm parameters: step size a € (0, 1], small ¢ > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0 Initialize Q(s, a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) =0
Loop for each episode: Loop for each episode:

Initialize S Initialize S

Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’

Loop for each step of episode:

Choose A from S using policy derived from @ (e.g., e-greedy)
Choose A’ from S’ using policy derived from @ (e.g., e-greedy) Take action A, observe R, ' ,
Q(S, A) — Q(S, A) + a[R+7Q(S', A') — Q(S, A)] Q(S, A) + Q(S, A) + a[R + ymax, Q(S’,a) — Q(S, 4)]

S+ S A« A S« S
until S is terminal until S is terminal

Exercise 6.12 Suppose action selection is greedy. Is Q-learning then exactly the same
algorithm as Sarsa? Will they make exactly the same action selections and weight

updates? O

~ Fraunhofer

s

Q-Learning vs. SARSA

Q-Learning estimates the return (total discounted future reward) for state-action pairs assuming a greedy policy

Instead, SARSA estimates the return for state-action pairs assuming the current policy (that it also follows)
If the current policy is also a greedy policy, then the distinction disappears.
SARSA will also get to the Q-Learning result if we decay ¢ (carefully!)

\

45 ~ Fraunhofer

s

Q-Learning vs. SARSA

SARSA algorithm (on-policy control)

+

+

46

Processes each sample immediately

Minimal update cost per sample

Requires a huge number of samples

Requires careful schedule for the learning rate

Makes minimal use of each sample

The ordering of samples influences the outcome
Exhibits instabilities under approximate representations
Poses constraints on sample collection (on-policy)
Requires careful handling on the policy greediness

@ sa
R
Os

@

Q-Learning algorithm (off-policy control)
+ Processes each sample immediately
+ Minimal update cost per sample
+ Poses no constraints on sample collection (off-policy)
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits (even more) instabilities under approximate
representations

\

~ Fraunhofer

s

Double Q-Learning

Double Q-learning, for estimating Q)1 ~ Q2 = g«

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1(s,a) and Q2(s,a), for all s € 81, a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:

Q1(5,4) « Q1(S,4) + a(R +7Q2(S', argmax, Q1 (S', 0)) — Q(S, 4))
else:

QZ(‘S) A) — Q2(Sa A) ar Ot(R + 7Q1 (S,a argmax, Q2(S’a a’)) - Q2(Sa A))
S+ 5

until S is terminal

= Fraunhofer

s

Double Q-Learning

100%

75%|
% left
actions 50% Q-learning
from A

Double
5% | Q-learning \\A
5"{; —————————————————————————————— optimal
1 100 200 300
Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

\

~ Fraunhofer

s

Teaser: Alphastar

@ IT Mobiles Entertainment Wissen Netzpolitik Wirtschaft

— TOPTHEMEN: psSGvo WINDOWS 10 ANDROID AMAZON Kl ELEKTROAUTOS
Challenge: heise online > News) 01/2019) Starcraft 2: DeepMind-Kl schlagt Profi-Spieler
= Game theory: many ,,good” strategies
25.01.2019 16:29 Uhr
= Imperfect information: crucial information is hidden Starcraft 2: DeepMind-Kl schligt Profi-
= Long-term planning: early actions pay off much later Spieler
= Real t|me COﬂtinua| tO game ClOCk Die DeepMind-KI Alphastar hat professionelle Starcraft-2-Spieler besiegt. Als

die Kl ein einziges Match verlor, verhielt sie sich auch noch unsportlich.

= Large action space: hierarchical action space

Von Daniel Herbig 41) @ Q33l

Solution:

= Many nice tricks ©

= LSTMs, autoregressive policy heads with pointer
networks, multi-agent centralized value baselines, ...

= |t is really about population modelling!

More Info:
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

49 ~ Fraunhofer

s

References

Books:
= Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
= Bellman, R.E. 1957. Dynamic Programming. Princeton University Press.

Lectures:
= UC Berkeley CS188 Intro to Al. http://ai.berkeley.edu/lecture_slides.html
= UCL Course on RL. http://www0.cs.ucl.ac.uk/staft/d.silver/web/Teaching.html

= Advanced Deep Learning and Reinforcement Learning (UCL + DeepMind).
http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/compgi22_advanced_deep_learning_and_reinforcement_learning

= Pieter Abbeel: CS 188 Introduction to Artificial Intelligence. Fall 2018

Blogs etc.:
= https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

\

50 ~ Fraunhofer

s

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

