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Policy-based Reinforcement Learning 1
Recap

Slide 2

§ But how do we maximize this? 
à Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

∇!𝔼"~$!𝐺 𝜏

§ Then we can update our parameters 𝜃 with a learning rate 𝛼 in the direction of the gradient:

𝜃 ← 𝜃 + 𝛼∇!𝔼"~$!𝐺 𝜏

Policy Gradient
often in literature referred to as ∇!𝐽 𝜋!
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§ Plugging grad-log-prob into the gradient update gives:

∇!𝔼"~$!𝐺 𝜏 = 𝔼"~$! ∇! log 𝑃 𝜏|𝜃 𝐺 𝜏

∇!𝔼"~$!𝐺 𝜏 = 𝔼"~$! .
%&'

(

∇! log 𝜋! 𝑎%|𝑠% 𝐺(𝜏)

§ But what is the intuition behind this gradient?

§ The gradient tries to 
§ Increase probability of paths with positive 𝐺
§ Decrease probability of paths with negative 𝐺
In practice:
§ Increase probability of paths with small positive 𝐺 a bit
§ Increase probability of paths with large positive 𝐺 much more 
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Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.
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Recap

§ Plugging grad-log-prob into the gradient update gives:

∇!𝔼"~$!𝐺 𝜏 = 𝔼"~$! ∇! log 𝑃 𝜏|𝜃 𝐺 𝜏

∇!𝔼"~$!𝐺 𝜏 = 𝔼"~$! .
%&'

(

∇! log 𝜋! 𝑎%|𝑠% 𝐺(𝜏)

§ Reduce variance: as this is an expectation, we can estimate it with a sample mean using Monte-Carlo 
sampling of 𝐿 trajectories:

∇!𝔼"~$!𝐺 𝜏 ≈
1
𝐿.

"

.
%&'

(

∇! log 𝜋! 𝑎%|𝑠% 𝐺 𝜏

∇!𝔼"~$!𝐺 𝜏 ≈
1
𝐿.

"

.
%&'

(

∇! log 𝜋! 𝑎%|𝑠% .
%"&%

(

𝛾%")%𝑅 𝑠%" , 𝑎%"
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each action in the episode in influenced
by the reward of the whole episode???
à reward-to-go policy gradient
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Recap

§ Monte-Carle Policy Gradient Control
§ Update parameters by stochastic gradient ascent
§ Using policy gradient theorem
§ Using return-to-go 𝑄$! 𝑠%, 𝑎% as an unbiased sample of 𝐺:

∆𝜃% = 𝛼∇! log 𝜋! 𝑎%|𝑠% 𝛾𝐺%
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328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G 
P

T

k=t+1
�k�t�1Rk (Gt)

✓  ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
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-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Policy-based Reinforcement Learning
Policy Gradients: where to hide the variance?

§ Expected Grad-Log-Prob Lemma*:
§ 𝑃! is a parameterized probability distribution over a random variable 𝑥, then:

𝔼&~'! ∇! log 𝑃! 𝑥 = 0

§ From this follows that for any function 𝑏 that only depends on states:

𝔼("~$! ∇! log 𝜋! 𝑎%|𝑠% 𝑏 𝑠% = 0, 	because:

𝔼("~$! 𝑏∇! log 𝜋 𝑎%|𝑠% = 𝔼 A
(

𝜋 𝑎|𝑠% 𝑏∇! log 𝜋 𝑎 𝑠%

𝔼("~$! 𝑏∇! log 𝜋 𝑎%|𝑠% = 𝔼 𝑏∇!A
(

𝜋 𝑎|𝑠%

𝔼("~$! 𝑏∇! log 𝜋 𝑎%|𝑠% = 𝔼 𝑏∇!1
𝔼("~$! 𝑏∇! log 𝜋 𝑎%|𝑠% = 0

7

* You can find one version of  the proof here: https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#id1

DIGRESSION

inverse
score-function trick

prob-distribution and
we sum over all actions



Policy-based Reinforcement Learning

§ This allows us to add or subtract any of such terms (i.e., baseline functions) to
our policy gradient without changing its expectation:

∇!𝔼"~$!𝐺 𝜏 = 𝔼"~$! A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% (𝐺% − 𝑏 𝑠% )
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DIGRESSION

=$
!!"!

#
𝛾!!$!𝑅 𝑠!! , 𝑎!! = 𝑄% 𝑠!, 𝑎!

Policy Gradients: where to hide the variance?

* You can find one version of  the proof here: https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#id1



Policy-based Reinforcement Learning
Advantage Functions: Intuition

§ But what is the intuition behind this gradient?

§ The gradient tries to 
§ Increase probability of paths with positive 𝐺
§ Decrease probability of paths with negative 𝐺

§ You mostly keep on increasing everything (but some more than others)

§ And this requires a lot of rollouts to average the effect out!
§ Ideal: in-/decrease probs of paths that are better/worse than the average!
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Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.



Policy-based Reinforcement Learning
Advantage Functions: Introduce a Baseline

But how does this help?

§ We can introduce a baseline to our targets!
§ We can define advantage functions that reduce variance
§ Intuition: if an agent sees what it expected, it feels neutral about it
§ Hint: we already did this when we introduced the reward-to-go variant!

§ For instance, we can use 𝑏 𝑠% = 𝑣$ 𝑠% to reduce variance in the sample estimate of the policy gradient:

𝐴$ 𝑠%, 𝑎% = 𝑄$ 𝑠%, 𝑎% − 𝑉$ 𝑠%

à faster and more stable policy learning!

10



Policy-based Reinforcement Learning
Advantage Functions: Intuition

Question: what helps our agent learn faster: information about
1. invariant actions on good states, or
2. information about good actions in bad/challenging states?

11

Q(s1, do nothing) = 100
V(s1) = 100

A(s1, do nothing) = 0

Iteration 1000Iteration 100

Q(s2, right) = 50
V(s2) = 10

A(s2, right) = 40



Policy-based Reinforcement Learning
REINFORCE w/ Baselines

12

330 Chapter 13: Policy Gradient Methods

Because REINFORCE is a Monte Carlo method for learning the policy parameter, ✓,
it seems natural to also use a Monte Carlo method to learn the state-value weights, w.
A complete pseudocode algorithm for REINFORCE with baseline using such a learned
state-value function as the baseline is given in the box below.

REINFORCE with Baseline (episodic), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Algorithm parameters: step sizes ↵✓ > 0, ↵w > 0
Initialize policy parameter ✓ 2 Rd

0
and state-value weights w 2 Rd (e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G 
P

T

k=t+1
�k�t�1Rk (Gt)

�  G� v̂(St,w)
w w + ↵w �rv̂(St,w)
✓  ✓ + ↵✓ �t �r ln ⇡(At|St, ✓)

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.11)).
Choosing the step size for values (here ↵w) is relatively easy; in the linear case we have
rules of thumb for setting it, such as ↵w = 0.1/E

⇥
krv̂(St,w)k2

µ

⇤
(see Section 9.6). It is

much less clear how to set the step size for the policy parameters, ↵✓, whose best value
depends on the range of variation of the rewards and on the policy parameterization.

↵ = 2�13
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-40
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-10 v⇤(s0)
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REINFORCE with baseline
↵ = 2�9

↵✓ = 2�9, ↵w = 2�6

Total reward
on episode

averaged over 100 runs

G0

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).

ß policy gradient update

ß advantage

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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REINFORCE w/ Baselines
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



Policy-based Reinforcement Learning
Vanilla Policy Gradient Algorithm

14

Estimate the 
Advantages

Calculate the 
gradient and take a 
gradient step

Update the Critic 
(used for the 
Advantage estimation)

Problem:
• Learning rate is a heuristic that cannot be 

easily tuned
• If we take large steps (especially in the 

beginning of training) we might never recover
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Actor-Critics
Policy Gradients: Variance (revisited)

∇!𝔼$!𝐺 𝜏 ≈
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% A
%#)%

+

𝛾%#,%𝑅 𝑠%# , 𝑎%# − 𝑏 𝑠%

§ Monte-Carlo policy gradient is sampled and has high variance
§ Idea: we can use a critic that estimates the Q

16

actor critic

=	𝑄$(𝑠% , 𝑎%)



Actor-Critics
Policy Gradients: Variance (revisited)

∇!𝔼$!𝐺 𝜏 ≈
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% A
%#)%

+

𝛾%#,%𝑅 𝑠%# , 𝑎%# − 𝑏 𝑠%

§ Monte-Carlo policy gradient is sampled and has high variance
§ Idea: we can use a critic that estimates the Q

à In practice, (as we already know) 𝑄$ 𝑠%, 𝑎% cannot be “computed”
à we instead need to approximate it with a neural network with parameters 𝜙	and standard SGD over 𝑘	epochs minimizing 

the MSE:

𝜙- = argmin
.
𝔼/";(", 23"~$$ 𝑄. 𝑠%, 𝑎% − R𝑅%

4

17

=	𝑄$(𝑠% , 𝑎%)



Actor-Critics
Actor-Critic

∇!𝔼$!𝐺 𝜏 ≈
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% A
%#)%

+

𝛾%#,%𝑅 𝑠%# , 𝑎%# − 𝑏 𝑠%

§ Monte-Carlo policy gradient is sampled and has high variance
§ Idea: we can use a critic (e.g., a NN as in DQN) to estimate the Q and learn two sets of parameters separately

§ Actor: update 𝜃 by policy gradient 

§ Critic: Update parameters 𝜙 of 𝑣.$, e.g., by n-step TD 

§ We call such algorithms actor-critic algorithms

18

?

=	𝑄$(𝑠% , 𝑎%)



Actor-Critics
Actor-Critic

§ Typically, we estimate 𝑣$(𝑠%; 𝜙) explicitly, and then sample

𝑞$ 𝑠%, 𝑎% ≈ 𝐺%
(6)

§ For instance: R𝐺%
(8) = 𝑅% + 𝛾𝑣$(𝑠%98; 𝜙)

§ Then we arrive at:

∇!𝔼$! R𝐺 𝜏 =
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% ( R𝐺%−𝑏 𝑠% )

à We use an approximate gradient in the direction suggested by the critic

19



Actor-Critics
Actor-Critic: Advantage Functions

∇!𝔼$!𝐺 𝜏 ≈
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% ( R𝐺%−𝑏 𝑠% )

Calculating the advantage function is (embarrassingly) straight forward:
§ As before, we can simply use the TD error:

𝐴$ 𝑠%, 𝑎% = 𝑄$ 𝑠%, 𝑎% − 𝑉$ 𝑠%
𝐴$ 𝑠%, 𝑎% = 𝑟 + 𝛾 ⋅ 𝑣$ 𝑠%98 − 𝑣$(𝑠%)

20

: = 𝐴$ 𝑠% , 𝑎%



Actor-Critics
Actor-Critic: Advantage Functions

∇!𝔼$!𝐺 𝜏 ≈
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% ( R𝐺%−𝑏 𝑠% )

Calculating the advantage function is (embarrassingly) straight forward:
§ We can also use Generalized Advantage Estimation (GAE)

(multi-step TD-error like TD with n-step returns)

 W𝐴%
(8) 	≔ 𝛿%: = −𝑉 𝑠% + 𝑟% + 𝛾𝑉(𝑠%98)

 W𝐴%
(4) 	≔ 𝛿%: + 𝛾𝛿%98: = −𝑉 𝑠% + 𝑟% + 𝛾𝑉 𝑠%98 + 𝛾4𝑉 𝑠%94

 W𝐴%
(;) 	≔ 𝛿%: + 𝛾𝛿%98: + 𝛾4𝛿%94: = −𝑉 𝑠% + 𝑟% + 𝛾𝑉 𝑠%98 + 𝛾4𝑉 𝑠%94 + 𝛾;𝑉 𝑠%9;

...
W𝐴%
- ≔ ∑<)*-,8𝛾<𝛿%9<: = −𝑉 𝑠% + 𝑟% + 𝛾𝑟%98 +⋯+ 𝛾-,8𝑟%9-,8 + 𝛾-𝑉 𝑠%9-

W𝐴%
(=) =	A

<)*

=

𝛾<𝛿%9<: = −𝑉 𝑠% +	A
<)*

=

𝛾< + 𝑟%9<

21

: = 𝐴$ 𝑠% , 𝑎%



Actor-Critics
Actor-Critic: Advantage Functions

∇!𝔼$!𝐺 𝜏 ≈
1
𝐿
A
"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% ( R𝐺%−𝑏 𝑠% )

Calculating the advantage function is (embarrassingly) straight forward:
§ Full returns: high variance
§ One-step TD: high bias
§ n-step TD: somewhere in the middle

But still: approximating the policy gradient introduces bias
§ It is important to use on-policy targets (i.e., can be corrected using importance sampling)
§ Alternative idea: bootstrap (with 𝜆 = 0) whenever policies differ

22

: = 𝐴$ 𝑠% , 𝑎%



Actor-Critics
Continuous Actions: Gaussian Policy

§ Because we directly update the policy parameters of the policy, we can easily deal with continuous action spaces
§ Most algorithms discussed can be used for both discrete and continuous actions

§ In continuous action spaces, a Gaussian policy is common, e.g., mean is some function of state 𝜇(𝑠)

§ For simplicity, lets consider fixed variance of 𝜎4 (which can be parameterized as well, instead)

§ Policy is Gaussian: 𝑎~ 𝜇 𝑠 , 𝜎4

§ The gradient of the log of the policy is then

∇! log 𝜋! 𝑠, 𝑎 =
𝑎 − 𝜇 𝑠
𝜎4 ∇𝜇(𝑠)

§ This can be used, for instance, in REINFORCE or advantage actor-critic

23

ε ∼ N (0,σ2)
<latexit sha1_base64="Yp5H0K/FSporURAyu4qsIzjUHhs="></latexit><latexit sha1_base64="Yp5H0K/FSporURAyu4qsIzjUHhs="></latexit><latexit sha1_base64="Yp5H0K/FSporURAyu4qsIzjUHhs="></latexit>

<latexit sha1_base64="Yp5H0K/FSporURAyu4qsIzjUHhs="></latexit>



Actor-Critics
Continuous Actions: Exploration-Exploitation

§ Exploration vs. Exploitation of Policy Gradient methods:
§ PG trains a stochastic policy in an on-policy way
§ Actions are sampled from the environment according to the latest version of its stochastic policy
§ Randomness in selecting actions

§ (initially) depends on the initialization
§ Becomes less over the course of training
§ …as the update rule encourages to exploit rewards that the policy already has found

§ Policy-gradients only consider improvement under current data
à easy to get stuck in local optima

24



Actor-Critics
One more thing: Exploration-Exploitation

§ Could we use ϵ-greedy? – Yes! but it is not ideal…
§ Wildly different actions cause breakage
§ Exploration is mostly uninformed about current best guess

§ Alternative idea: make sure that the entropy of the policy is not too low:

−A
/

𝜇 𝑠 A
(

𝜋 𝑎 𝑠 log 𝜋 𝑎 𝑠 = −𝔼 log 𝜋 𝑎% 𝑠%

à Add a regularization term that pushes entropy up slightly each step
§ Encourages exploration and does not pick fully randomly

§ May increase variance in Gaussian policies
§ Makes softmax slightly more uniform

§ Similar to (spoiler!) KL-regularization (in TRPO)

§ Works well in practice

25



Actor-Critics
Conclusion

§ It is substantially different from DQNs
§ no replay buffer, no stored experiences
§ learn directly, on-policy

§ Once a batch has been used à discard experience
§ less sample efficient

§ Learning off-policy (which would allow to reuse experience) is not (or only with certain tricks) possible

26

https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html



Actor-Critics
Conclusion

§ The policy gradient has many forms:

  ∇!𝐽 𝜃 = 𝔼$! ∇! log 𝜋! 𝑠, 𝑎 𝐺% 	 	 	 REINFORCE

	 	 ∇!𝐽 𝜃 = 𝔼$! ∇! log 𝜋! 𝑠, 𝑎 (𝐺%−𝑏 𝑠% 	 	 REINFORCE w/ baseline 

	 	 ∇!𝐽 𝜃 = 𝔼$! ∇! log 𝜋! 𝑠, 𝑎 W𝐴%
(=)

advantage actor-critic 

	 	 ∇!𝐽 𝜃 = ∇!𝑄% 𝑠, 𝜋!(𝑠) deterministic policy gradient
(see DDPG)

§ Each leads to a stochastic gradient ascent algorithm

§ Critic uses policy evaluation (e.g., MC or TD) to estimate 𝑄$ 𝑠, 𝑎 or 𝑉$(𝑠)

27

Sutton et a.: Reinforcement learning: An introduction. 2018.



Actor-Critics

“Always try to solve a problem the direct way
– but be careful with the high variance.”

https://www.youtube.com/watch?v=ek3hgVQ1RqM

28

Lessons Learned
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§ Deep Deterministic Policy Gradient (DDPG)
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Trust-Region Policy Optimization

§ We wanted to do the following:

max
!
𝐽 𝜋! = 𝔼"~$! A

%)*

=

𝛾%𝑟%

§ Then we defined the policy gradient:

𝑔 = ∇!𝐽 𝜋! = ∇!𝔼$!𝐺 𝜏 ≈
1
𝐿A

"

A
%)*

+

∇! log 𝜋! 𝑎%|𝑠% W𝐴%

§ If W𝐴% > 0 (< 0):
§ Gradient becomes positive (negative)
§ The probability of taking 𝑎% in 𝑠% is increased (decreased)

§ We update our policy parameters by

𝜃-98 = 𝜃- + 𝛼 ⋅ 𝑔

30

Take a gradient step in updating the policy
(gradient ascent)

Policy Gradients so far



Loop forever:
1. collect trajectories via policy 𝜋!
2. Estimate advantage function 𝐴$!(𝑎%|𝑠%)
3. Compute policy gradient:

∇𝐽 𝜃 = 𝔼"~$! A
%

	∇! log 𝜋! 𝑎%|𝑠% 𝐴$! 𝑎%|𝑠%

4. Update policy parameters 𝜃6>? ← 𝜃 + 𝛼∇!𝐽 𝜃

http://ai.berkeley.edu/lecture_slides.html

Trust-Region Policy Optimization
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Policy Gradients so far



Trust-Region Policy Optimization

Problem
§ Run gradient descent/ascent on one batch of collected experience

§ Note: the advantage function (which is a noisy estimate) may not be accurate
§ Too large steps may lead to a disaster (even if the gradient is correct)
§ Too small steps are also bad

§ Definition and scheduling of learning rates in RL is tricky as the
underlying data distribution changes with updates to the policy

§ Mathematical formulization:
§ First-order derivatives approximate the (parameter) surface to be flat
§ But if the surface exhibits high curvature it gets dangerous
§ Projection: small changes in parameter space might lead to large changes in policy space!

§ Parameters 𝜽	get updated to areas too far out of the range from where previous data was collected
(note: a bad policy leads to bad data – unlike in value-based RL!)
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Images taken from https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
and http://www.taiwanoffthebeatentrack.com/2012/08/23/mount-hua-华山-the-most-dangerous-hike-in-the-world/

Policy Gradients so far



Trust-Region Policy Optimization
Primer: Natural Policy Gradient

There is something wrong with the policy gradient. Example:

§ 𝑟 𝑠%, 𝑎% = −𝑠%4 − 𝑎%4

§ log 𝜋! 𝑎%|𝑠% = − 8
4@%

𝑘𝑠% − 𝑎% 4 + 𝑐, with 𝜃 = (𝑘, 𝜎)
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20 Jonathan Richard Shewchuk
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Figure 19: Solid lines represent the starting points that give the worst convergence for Steepest Descent.
Dashed lines represent steps toward convergence. If the first iteration starts from a worst-case point, so do
all succeeding iterations. Each step taken intersects the paraboloid axes (gray arrows) at precisely a 45
angle. Here, 3 5.

upper bound for (corresponding to the worst-case starting points) is found by setting 2 2:

2 1
4 4

5 2 4 3

5 2 4 3

5 2 4 3

1 2

1 2

1
1

(27)

Inequality 27 is plotted in Figure 20. The more ill-conditioned the matrix (that is, the larger its condition
number ), the slower the convergence of Steepest Descent. In Section 9.2, it is proven that Equation 27 is
also valid for 2, if the condition number of a symmetric, positive-definite matrix is defined to be

the ratio of the largest to smallest eigenvalue. The convergence results for Steepest Descent are

1
1 0 and (28)

Shewchuk: An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Edition 1 ¼. Peters et al.: Natural Actor-Critic. 2018

poor conditioning

* Example take from Sergey Levine’s CS285: Advanced Policy Gradients



Trust-Region Policy Optimization

§ Given:
§ 𝜃 ← 𝜃 + 𝛼∇!𝐽 𝜃 and 𝜋! 𝑎%|𝑠%

§ Some parameters change probabilities a lot more than others!
à a single value for 𝛼 is not sufficient

§ What we essentially do (optimization perspective on 1st order gradient descent):

§ 𝜃A ← argmax
!#

𝜃A − 𝜃 +∇!𝐽 𝜃 , subject to 𝜃A − 𝜃 4 ≤ 𝜖

§ 𝜃A ← argmax
!#

𝜃A − 𝜃 +∇!𝐽 𝜃 , subject to 𝐷 𝜋!# , 𝜋! ≤ 𝜖

34

But how to rescale???

à For instance, KL-divergence

Better with 2nd order information
à 𝜃& ← argmax

'&
𝜃& − 𝜃 (∇'𝐽 𝜃 , s.t. 𝜃& − 𝜃 𝐅

* ≤ 𝜖
à 𝜃 ← 𝜃 + 𝛼𝐅+,∇'𝐽 𝜃

“trust region”

Primer: Natural Policy Gradient



Trust-Region Policy Optimization (TRPO)

“Simple” Idea

Regularize updates to the policy parameters,
such that the policy does not change too much.
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only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods

Optimization in Machine Learning

§ It is common to formulate ML problems as optimization problems:
§ Minimize the squared error
§ Minimize the cross entropy
§ Maximize the log-likelihood
§ Maximize the discounted sum of rewards
§ Minimize the sum of control cost

36



only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods

Optimization in Machine Learning: two classes

1. Line Search, e.g., gradient descent
§ find a (some) direction of improvement
§ (cleverly) select a step length

2. Trust-Region Methods
§ select a trust region (analog to max step length)
§ find a point of improvement in that region

37



only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods

§ Idea: 

§ Approximate the real objective 𝑓 with something simpler, i.e., l𝑓
§ Solve m𝑥∗ = argmin

&
l𝑓(𝑥)

§ Problem:

§ The optimum m𝑥∗ might be in a region where l𝑓 poorly approximates 𝑓
§ m𝑥∗ might be far from optimal

§ Solution:

§ Restrict the search to a region 𝑡𝑟 where we trust l𝑓 to approximate 𝑓 well

§ Solve m𝑥∗ = argmin
&∈%D

l𝑓(𝑥)

38



only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods

2nd order Taylor approximation

§ Example: chose l𝑓 to be quadratic approximation of 𝑓:

𝑓 𝑥 ≈ l𝑓 𝑥 = 𝑓 𝑐 + ∇𝑓 𝑐 + 𝑥 − 𝑐 +
1
2!

𝑥 − 𝑐 +𝐻 𝑐 𝑥 − 𝑐 ,

where ∇𝑓 is the gradient and 𝐻 is the Hessian

Example: nth order Taylor approximation of 𝑓 𝑥 = 𝑒,&%, 𝑐 = 1

39

https://mathinsight.org/applet/taylor_polynomial

𝑝- 𝑥 = 0.37 𝑝, 𝑥 = 𝑝-(𝑥) − 0.74 ⋅ (𝑥 − 1) 𝑝* 𝑥 = 𝑝, 𝑥 + 0.74 ⋅
𝑥 − 1 *

2! 𝑝. 𝑥 = 𝑝* 𝑥 + 1.47 ⋅
𝑥 − 1 .

3!

à 𝑝* 𝑥 = ∑+&'* ,
+!
𝑓 + 𝑎 𝑥 − 𝑎 +



only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods

2nd order Taylor approximation

§ Example: chose l𝑓 to be quadratic approximation of 𝑓:

𝑓 𝑥 ≈ l𝑓 𝑥 = 𝑓 𝑐 + ∇𝑓 𝑐 + 𝑥 − 𝑐 +
1
2!

𝑥 − 𝑐 +𝐻 𝑐 𝑥 − 𝑐 ,

where ∇𝑓 is the gradient and 𝐻 is the Hessian

§ The trust region is often chosen to be a hypersphere:

𝑥 − 𝑐 4 ≤ 𝛿

40



Initialize 𝛿, 𝑥!∗, 𝑛 = 0
Loop forever:
1. 𝑛 ← 𝑛 + 1
2. Solve x#∗ = argmin

$
1𝑓(𝑥)

subject to 𝑥 − 𝑥#%&∗
' ≤ 𝛿

3. If 1𝑓 𝑥 ≈ 𝑓 𝑥#∗ : increase 𝛿,
else: decrease 𝛿

41

only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods



only for referenceTrust-Region Policy Optimization
Primer: Trust-Region Methods

2nd order Taylor approximation

§ l𝑓 often chosen to be quadratic approximation of 𝑓:

min
&
𝑓 𝑐 + ∇𝑓 𝑐 + 𝑥 − 𝑐 +

1
2! 𝑥 − 𝑐

+𝐻 𝑐 𝑥 − 𝑐 ,

subject to 𝑥 − 𝑐 4 ≤ 𝛿.

§ When 𝐻 is positive semi-definite
§ Convex optimization
§ Simple and globally optimal solution
§ e.g.: conjugate gradient

§ When 𝐻 is not positive semi-definite
§ Non-convex optimization
§ Simple heuristics that guarantee improvement

42
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Trust-Region Policy Optimization (TRPO)
Back to RL...

The problem(s) of the Policy Gradient (PG) is that
§ PG keeps old and new policy close in parameter space (not in policy space!), while
§ small changes can lead to large differences in performance, and
§ “large” step-sizes hurt performance (whatever “large” means…)

43

Loop forever:
1. collect trajectories via policy 𝜋'
2. Estimate advantage function 𝐴%"(𝑠!|𝑎!)
3. Compute policy gradient:

∇𝐽 𝜃 = 𝔼(~%" $
!

	∇' log 𝜋' 𝑎!|𝑠! 𝐴%" 𝑠!|𝑎!

4. Update policy parameters 𝜃*+, ← 𝜃 + 𝛼∇'𝐽 𝜃

Non-stationary input data 
due to changing policy and 
reward distribution change

random at beginning

Update carefully
à We want improvement but not degradation

à goto Slide 55



only for referenceTrust-Region Policy Optimization (TRPO)

§ We want to optimize 𝜂 𝜋 , i.e., the expected return of policy 𝜋:

𝜂 𝜋 = 𝔼//~E/,("~$012 ⋅|/" A
%)*

=

𝛾%𝑟%

§ We collect data with 𝜋H<I and optimize to get a new policy 𝜋6>?

§ In fact, so far…
§ we did not really optimize anything, as
§ we just favored those (𝑎%|𝑠%) that had a higher advantage

§ Question:
§ How can we write down an optimization problem that allows to do small updates on a policy 𝜋 based on data sampled 

from 𝜋 (on-policy data)?

44

1 Kakade et al.: Approximately Optimal Approximate Reinforcement Learning. ICML 2002.



only for referenceTrust-Region Policy Optimization (TRPO)

§ We want to optimize 𝜂 𝜋 , i.e., the expected return of policy 𝜋:

𝜂 𝜋 = 𝔼//~E/,("~$012 ⋅|/" A
%)*

=

𝛾%𝑟%

§ We collect data with 𝜋H<I and optimize to get a new policy 𝜋6>?

§ Let’s express 𝜂 𝜋6>? in terms of advantage over the original policy1:

𝜂 𝜋6>? = 𝜂 𝜋H<I + 𝔼"~$345 A
%)*

=

𝛾%𝐴$012 𝑠%, 𝑎%

𝜂 𝜋6>? = 𝜂 𝜋H<I +A
/

𝜌$345(𝑠)A
(

𝜋6>? 𝑎 𝑠 𝐴$012(𝑠, 𝑎)

45

Expected return of 
the new policy

Expected return of 
the old policy

Sample from new 
policy

1 Kakade et al.: Approximately Optimal Approximate Reinforcement Learning. ICML 2002.



only for referenceTrust-Region Policy Optimization (TRPO)

§ We want to optimize 𝜂 𝜋 , i.e., the expected return of policy 𝜋:

𝜂 𝜋 = 𝔼//~E/,("~$012 ⋅|/" A
%)*

=

𝛾%𝑟%

§ We collect data with 𝜋H<I and optimize to get a new policy 𝜋6>?

§ Let’s express 𝜂 𝜋6>? in terms of advantage over the original policy1:

𝜂 𝜋6>? = 𝜂 𝜋H<I + 𝔼"~$345 A
%)*

=

𝛾%𝐴$012 𝑠%, 𝑎%

𝜂 𝜋6>? = 𝜂 𝜋H<I +A
/

𝜌$345(𝑠)A
(

𝜋6>? 𝑎 𝑠 𝐴$012(𝑠, 𝑎)

46

Discounted visitation frequency according to new policy:
𝜌6-./ 𝑠 = 𝑃 𝑠- = 𝑠 + 𝛾𝑃 𝑠, = 𝑠 + 𝛾*𝑃 𝑠* = 𝑠 +⋯

1 Schulman et al.: Trust-Region Policy Optimization. ICML 2015.



only for referenceTrust-Region Policy Optimization (TRPO)

§ We want to optimize 𝜂 𝜋 , i.e., the expected return of policy 𝜋:

𝜂 𝜋 = 𝔼//~E/,("~$012 ⋅|/" A
%)*

=

𝛾%𝑟%

§ We collect data with 𝜋H<I and optimize to get a new policy 𝜋6>?

§ Let’s express 𝜂 𝜋6>? in terms of advantage over the original policy:

𝜂 𝜋6>? = 𝜂 𝜋H<I + 𝔼"~$345 A
%)*

=

𝛾%𝐴$012 𝑠%, 𝑎%

𝜂 𝜋6>? = 𝜂 𝜋H<I +A
/

𝜌$345(𝑠)A
(

𝜋6>? 𝑎 𝑠 𝐴$012(𝑠, 𝑎)

47

> 0
new expected

return
old expected

return>

à New objective guarantees improvement from 𝜋./0 → 𝜋*12

If we can guarantee this…



only for referenceTrust-Region Policy Optimization (TRPO)

§ We want to optimize 𝜂 𝜋 , i.e., the expected return of policy 𝜋:

𝜂 𝜋 = 𝔼//~E/,("~$012 ⋅|/" A
%)*

=

𝛾%𝑟%

§ We collect data with 𝜋H<I and optimize to get a new policy 𝜋6>?

§ Let’s express 𝜂 𝜋6>? in terms of advantage over the original policy:

𝜂 𝜋6>? = 𝜂 𝜋H<I + 𝔼"~$345 A
%)*

=

𝛾%𝐴$012 𝑠%, 𝑎%

𝜂 𝜋6>? = 𝜂 𝜋H<I +A
/

𝜌$345(𝑠)A
(

𝜋6>? 𝑎 𝑠 𝐴$012(𝑠, 𝑎)

48

However, this cannot be easily estimated. The state visitations 
that we sampled so far are coming from the old policy!

à we cannot optimize this in the current form!



only for referenceTrust-Region Policy Optimization (TRPO)

𝜂 𝜋6>? = 𝜂 𝜋H<I +A
/

𝜌$345(𝑠)A
(

𝜋6>? 𝑎 𝑠 𝐴$012(𝑠, 𝑎)

𝐿 𝜋6>? = 𝜂 𝜋H<I +A
/

𝜌$012(𝑠)A
(

𝜋6>? 𝑎 𝑠 𝐴$012(𝑠, 𝑎)

§ The approximation is accurate within step size 𝛿 (trust region)
§ 𝛿 needs to be chosen based on a lower-bound approximation error

§ Monotonic improvement guaranteed
§ (within the green region!)

49

≈approximate
locally

𝜃!"#

𝜃$%&

𝜃$%&

Trust region
à 𝜋!;<=(𝑠, 𝑎) does not change too much

This we already sampled
à We already have this!



only for referenceTrust-Region Policy Optimization (TRPO)

§ If we want to optimize 𝐿 𝜃6>? instead of 𝜂 𝜃6>? …
with a guarantee of monotonic improvement on 𝜂 𝜃6>? , …
… we need a bound on 𝐿 𝜃6>? .

§ It can be proven that there exists the following bound1,2:

𝜂 𝜋6>? ≥ 𝐿 𝜋6>? − 𝐶 ⋅ 𝐷KLM(& 𝜋H<I, 𝜋6>? , where 𝐶 = NOP
8,P %

50

1 Schulman et al.: Trust-Region Policy Optimization. ICML 2015.
2 Kakade et al.: Approximately Optimal Approximate Reinforcement Learning. ICML 2002.



only for referenceTrust-Region Policy Optimization (TRPO)
Primer: KL-Divergence

§ A measure of distance between two probability distributions 𝑃 and 𝑄:

𝐷KL(𝑃‖𝑄) = 𝔼&~' log
𝑃(𝑥)
𝑄(𝑥)

= 𝔼&~' log 𝑃 𝑥 − log𝑄 𝑥

§ Intuition stems from theory of channel coding:
§ The amount of information 𝐼 (in bits or nats) that is transmitted from a sender to a receiver depends on the actual 

probability of the actual incident/event

𝐼 𝑥 = log(
1
𝑝&

= logQ 1 − log( 𝑝& = − logQ 𝑝 𝑥

§ Example #1: two events A and B have a probability of 0.75 and 0.25; then the information that A has happened is 
−𝑙𝑜𝑔4 0.75 = 0.41 (and for B it is 2)

§ Example #2: A and B are equally likely, i.e., 0.5 each; then the information about which of them has happened is 
−𝑙𝑜𝑔4 0.5 = 1

§ If we use base 2 it tells us how much uncertainty is cut off by half!

§ For simplification we use nats as log4 𝑥 = ⁄log 𝑥 log 2 (log 2 is constant)
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only for referenceTrust-Region Policy Optimization (TRPO)
Primer: KL-Divergence

§ The entropy (of a probability distribution) is given by:

𝐻 𝑝 = −A
R

𝑝R log 𝑝R

 

§ It measures the average amount of information from one sample drawn from the underlying probability distribution 𝑝
à it measures how unpredictable 𝑝 is
à defines the lower bound of the optimal bit-encoding 

§ As usual, we can also write 𝐻 𝑝 in its expectation and draw 𝑥 from 𝑝:

𝐻 𝑝 = 𝔼&~S − log 𝑝(𝑥)

52



only for referenceTrust-Region Policy Optimization (TRPO)

§ The cross-entropy defines the average number of bits to identify a sampled event if it is encoded using 𝑞 rather than 𝑝: 

𝐻 𝑝, 𝑞 = −A
R

𝑝R log4 𝑞R

§ tells us the difference about the true probability distribution 𝑝 and the predicted probability distribution 𝑞 (given the 
encoding)

§ If 𝑝 and 𝑞 are equal, then the cross-entropy and
the entropy are equal

§ As before, we can write 𝐻 𝑝, 𝑞 in its expectation:

              𝐻 𝑝, 𝑞 = 𝔼&~S − log 𝑞(𝑥)

53

from https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained

Primer: KL-Divergence



only for referenceTrust-Region Policy Optimization (TRPO)
Primer: KL-Divergence

§ KL-Divergence tells us how much far away the cross-entropy is from the entropy (note that 𝐻 𝑝, 𝑞 ≥ 𝐻 𝑝 ) :

𝐷KL 𝑝||𝑞 = 𝐻 𝑝, 𝑞 − 𝐻(𝑝)

§ Measure of dissimilarity between two probability distributions 𝑃 and 𝑄:

𝐷KL(𝑝‖𝑞) = 𝔼&~S − log 𝑞(𝑥) − 𝔼&~S − log 𝑝 𝑥
𝐷KL 𝑝||𝑞 = 𝔼&~S − log 𝑞 𝑥 − − log 𝑝(𝑥)
𝐷KL 𝑝||𝑞 = 𝔼&~S − log 𝑞 𝑥 + log 𝑝(𝑥)

𝐷KL(𝑝| 𝑞 = 𝔼&~S log 𝑝 𝑥 − log 𝑞 𝑥 = 𝔼&~S log
𝑝(𝑥)
𝑞(𝑥)

𝐷KL(𝑝| 𝑞 = ∑R 𝑝 𝑖 log
S R
T(R) and     𝐷KL(𝑝| 𝑞 = ∫𝑃 𝑥 log S &

T(&)𝑑𝑥

§ Note: KL-Divergence is asymmetric and hence no distance metric!

54 for more information see also https://www.youtube.com/watch?v=ErfnhcEV1O8 and https://medium.com/activating-robotic-minds/demystifying-kl-divergence-7ebe4317ee68 



Trust-Region Policy Optimization (TRPO)
Back to RL…

§ If we want to optimize 𝐿 𝜃6>? instead of 𝜂 𝜃6>? …
with a guarantee of monotonic improvement on 𝜂 𝜃6>? , …
… we need a bound on 𝐿 𝜃6>? .

§ It can be proven that the following bound holds1,2:

𝜂 𝜋6>? ≥ 𝐿 𝜋6>? − 𝐶 ⋅ 𝐷KLM(& 𝜋H<I, 𝜋6>? , where 𝐶 = NOP
8,P %
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1 Schulman et al.: Trust-Region Policy Optimization. ICML 2015.
2 Kakade et al.: Approximately Optimal Approximate Reinforcement Learning. ICML 2002.

𝜋#$%(𝑠|𝑎) 𝜋&'((𝑠|𝑎)

𝐷'( 𝜋!"#W𝜋$%& = 𝜋 𝑎 log
𝜋!"#(𝑎)
𝜋$%&(𝑎)



Trust-Region Policy Optimization (TRPO)
Minorization-Maximization Algorithm

§ A monotonically increasing policy can be defined by:

𝜋 = argmax
$

𝐿 𝜋6>? − 𝐶 ⋅ 𝐷KLM(& 𝜋H<I, 𝜋6>?	 , where 𝐶 = NOP
8,P %
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actual expected return 𝜂(𝜋∗)

surrogate functions
𝐿*)*+ 𝜋+ − 𝐶 ⋅ 𝐷'(,-. 𝜋!"#, 𝜋+

𝜋

𝜂(𝜋)

Hard to tune
à in practice only small steps

𝜋+𝜋+/0𝜋+/1
𝜋+/2 𝜋+30

à goto Slide 63



only for referenceTrust-Region Policy Optimization (TRPO)
Minorization-Maximization Algorithm

§ A monotonically increasing policy can be defined by:

𝜋 = argmax
$

𝐿 𝜋6>? − 𝐶 ⋅ 𝐷KLM(& 𝜋H<I, 𝜋6>?	 , where 𝐶 = NOP
8,P %

Side-note:
§ A constraint on the KL-divergence between new and old policy (i.e., a trust region constraint) allows larger step sizes while 

being mathematically equivalent:

𝜋 = argmax
$

𝐿$012 , such that 𝐷KLM(& 𝜋H<I, 𝜋 ≤ 𝛿

§ Approximation with 𝐿 is accurate within 𝛿
à here, monotonic improvement guaranteed
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à 𝜋!;<=(𝑠, 𝑎) does not change too much



only for referenceTrust-Region Policy Optimization (TRPO)

§ Solving the KL-penalized problem (btw: directly over 𝜃 not 𝜋!)

argmax
!

𝐿 �𝜃 − 𝐶 ⋅ 𝐷KLM(& 𝜃, 𝜃H<I

§ Use mean KL-divergence instead of max:

argmax
!

𝐿 �𝜃 − 𝐶 ⋅ 𝐷KL 𝜃, 𝜃H<I

argmax
!

𝜕
𝜕𝜃
𝐿 𝜃 �

!)!012
⋅ 𝜃 − 𝜃H<I −

𝐶
2
𝜃 − 𝜃H<I + ⋅

𝜕4

𝜕4𝜃
𝐷KL 𝜃, 𝜃H<I �

!)!012
⋅ 𝜃 − 𝜃H<I

argmax
!

𝑔 ⋅ 𝜃 − 𝜃H<I −
𝐶
2
𝜃 − 𝜃H<I +𝐹 𝜃 − 𝜃H<I
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linear approximation of 𝐿 quadratic approximation of KL

𝑔 =
𝜕
𝜕𝜃 𝐿 𝜃 �

!)!012
𝐹 =

𝜕4

𝜕4𝜃 𝐷KL 𝜃, 𝜃H<I �
!)!012



only for referenceTrust-Region Policy Optimization (TRPO)

§ Derive with respect to 𝜃 and set to 0:

0 =
𝜕
𝜕𝜃 𝑔 ⋅ 𝜃 − 𝜃H<I −

𝑐
2 𝜃 − 𝜃H<I +𝐹 𝜃 − 𝜃H<I

0 = 1 ⋅ 𝑔 −
𝑐
2
𝜃 − 𝜃H<I +𝐹 + 𝜃 − 𝜃H<I −

𝑐
2
𝐹

g −
𝑐
2 𝜃 − 𝜃H<I +𝐹 =

𝑐
2 𝜃 − 𝜃H<I 𝐹

𝐹,8𝑔 −
𝑐
2
𝜃 − 𝜃H<I + =

𝑐
2
𝜃 − 𝜃H<I 	

𝐹,8𝑔 = 𝑐 𝜃 − 𝜃H<I
1
𝑐
𝐹,8𝑔 = 𝜃 − 𝜃H<I

§ Solution: iterative optimization with Newton‘s method:

𝜃6>? = 𝜃H<I +
1
𝑐
𝐻,8𝑔
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only for referenceTrust-Region Policy Optimization (TRPO)

§ The update step

𝜃6>? = 𝜃H<I +
1
𝑐 𝐻

,8𝑔

     involves computing the inverse of the Hessian
     à too expensive for large 𝜃

§ Conjugate Gradient (CG) computes 𝐹,8𝑔 
approximately without forming 𝐹 explicitely

§ CG solves 𝑥 = 𝐴,8𝑏 without explicitely forming 𝐴 

§ After 𝑘 iterations, CG has minimized 8
4
𝑥+𝐴𝑥 − 𝑏𝑥
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26 Jonathan Richard Shewchuk
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Figure 25: The method of Conjugate Directions using the axial unit vectors, also known as Gaussian
elimination.

are required to generate the full set. In fact, if the search vectors are constructed by conjugation of the axial
unit vectors, Conjugate Directions becomes equivalent to performing Gaussian elimination (see Figure 25).
As a result, the method of Conjugate Directions enjoyed little use until the discovery of CG — which is a
method of Conjugate Directions — cured these disadvantages.

An important key to understanding the method of Conjugate Directions (and also CG) is to notice
that Figure 25 is just a stretched copy of Figure 21! Remember that when one is performing the method
of Conjugate Directions (including CG), one is simultaneously performing the method of Orthogonal
Directions in a stretched (scaled) space.

7.3. Optimality of the Error Term

Conjugate Directions has an interesting property: it finds at every step the best solution within the bounds
of where it’s been allowed to explore. Where has it been allowed to explore? Let be the -dimensional
subspace span 0 1 1 ; the value is chosen from 0 . What do I mean by “best
solution”? I mean that Conjugate Directions chooses the value from 0 that minimizes (see
Figure 26). In fact, some authors derive CG by trying to minimize within 0 .

In the same way that the error term can be expressed as a linear combination of search directions

Jonathan Richard Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Edition 1 ¼. 1994.



only for referenceTrust-Region Policy Optimization (TRPO)

§ Unconstrained problem: argmax
!
𝐿 𝜃 − 𝐶 ⋅ 𝐷KL 𝜃H<I, 𝜃

§ Constrained problem: argmax
!
𝐿 𝜃 subject to 𝐶 ⋅ 𝐷KL 𝜃, 𝜃H<I ≤ 𝛿

§ 𝛿 is a hyper-parameter, remains fixed over the whole learning process

§ Solve constrained quadratic problem: compute 𝐹,8𝑔 and then rescale step to get correct KL:

1. max
!
𝑔 ⋅ 𝜃 − 𝜃H<I subject to 8

4
𝜃 − 𝜃H<I +𝐹) 𝜃 − 𝜃H<I ≤ 𝛿

2. Lagrangian: ℒ 𝜃, 𝜆 = 𝑔 ⋅ 𝜃 − 𝜃H<I − a
4 𝜃 − 𝜃H<I +𝐹 𝜃 − 𝜃H<I − 𝛿

3. Differentiate with respect to 𝜃 and get 𝜃 − 𝜃H<I =
8
a
𝐹,8𝑔

4. We want 8
4
𝑠+𝐹𝑠 = 𝛿

5. Given candidate step 𝑠b6/a(<>I rescale 𝑠 = 4c
/=3>?@142⋅d⋅/=3>?@142

⋅ 𝑠b6/a(<>I
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only for referenceTrust-Region Policy Optimization (TRPO)

You have seen this very often so far

You have seen this very often so far

This is an approximation to the
natural policy gradient (2nd order)
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Trust-Region Policy Optimization (TRPO)
Intuition & Summary

§ We approximate the expected return function locally around the current policy. 
§ The accuracy decreases when the new policy and the current policy diverge from each other.

§ But we can establish an upper bound for the error.
§ Therefore, we can guarantee a policy improvement if we optimize the local approximation within a trusted region.
§ Outside this region, the bet is off. 

§ Even it may have a better-calculated value, its range of error fails the improvement guarantee. With such a guarantee inside 
the trust region, we can locate the optimal policy iteratively. So even it takes a while to prove it mathematically, the 
reasoning is simple.
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Trust-Region Policy Optimization (TRPO)

§ Shortcomings:
§ TRPO minimizes a quadratic equation to approximate the inverse of the Fisher Information Matrix (FIM), i.e., the Hessian
§ To do this for every policy is expensive
§ It requires a large batch of rollouts to approximate it correctly
§ Less sample-efficient to other PG methods when trained with first-order methods such as Adam

à These become a significant issue for large/deep networks!

§ And: Yes, TRPO is a complex algorithm
that is hard to understand & implement
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Intuition & Summary



Policy-based RL
Agenda

§ Policy-based RL 1
§ Intro to Policy-based RL
§ Policy Gradients

§ Policy-based RL 2
§ Variance & Baselines
§ Actor-Critics
§ Trust-Region Policy Optimization (TRPO)
§ Proximal Policy Optimization (PPO)
§ Deep Deterministic Policy Gradient (DDPG)
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Proximal Policy Optimization (PPO)

§ The main motivation behind PPO is the same as for TRPO:
§ Make the biggest possible improvement step
§ Do not step too far such that the performance accidentally collapses

§ PPO addresses the shortcomings of TRPO:
§ PPO uses 1st order methods with a few tricks
§ Significantly simpler to implement
§ Shows similar performance to TRPO (empirically)

§ There are two variants:

§ PPO-penalty: TRPO with KL-penalization instead of constraint (penalty coefficient is adjusted and scaled automatically 
over the course of training: Adaptive KL Penalty Coefficent)

§ PPO-clip: no constraints! Adds a clipping to the objective function to remove incentives to move too far

Spoiler: PPO is (1) much simpler to understand and to implement, and (2) much better (empirically)
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Proximal Policy Optimization (PPO)
Where are we so far?

§ TRPO maximizes a “surrogate” objective subject to a constraint on the size of the policy update:

max
!

�𝔼%
𝜋! 𝑎%|𝑠%
𝜋!012 𝑎%|𝑠%

W𝐴%	 , subject	to	 �𝔼% 𝐾𝐿 𝜋!012 ⋅ |𝑠% , 𝜋! ⋅ |𝑠% ≤ 𝛿

with 𝜃H<I being the policy parameters before the update

§ We did not explicitly formulate it like this, but the intuition behind it is:
§ We want to measure how 𝜋! performs relative to 𝜋!012 (using data from the old policy)

§ The original objective (see TRPO slides) can be exactly reformulated to this one

§ We can solve this with CG after making a linear approximation to the objective and a quadratic approximation to the KL-
constraint
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Proximal Policy Optimization (PPO)
Where are we so far?

§ TRPO maximizes a “surrogate” objective subject to a constraint on the size of the policy update:

max
!

�𝔼%
𝜋! 𝑎%|𝑠%
𝜋!012 𝑎%|𝑠%

W𝐴%	 , subject	to	 �𝔼% 𝐾𝐿 𝜋!012 ⋅ |𝑠% , 𝜋! ⋅ |𝑠% ≤ 𝛿

with 𝜃H<I being the policy parameters before the update

§ Let us define the probability ratio 𝑟% 𝜃 :

𝑟% 𝜃 =
𝜋! 𝑎%|𝑠%
𝜋!H<I 𝑎%|𝑠%

	 ,	i.e., 𝑟% 𝜃H<I = 1.

§ In other words, TRPO maximizes the following objective:

𝐿e'f 𝜃 = �𝔼% 𝑟% 𝜃 W𝐴%	

penalizing changes to the policy that move 𝑟% 𝜃 (too far) away from 1.
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Proximal Policy Optimization (PPO)

§ The PPO objective we want to maximize is given by

𝐿 𝜃 = �𝔼% min 𝑟% 𝜃 W𝐴%, clip 𝑟% 𝜃 , 1 − 𝜖, 1 + 𝜖 W𝐴% ,

where 𝜖 is a hyperparameter (i.e., 0.1 or 0.2) that defines how far 𝜋6>? may go away from 𝜋H<I

§ First term inside the min is 𝐿e'f 𝜃

§ Second term inside the min clips the probability ratio
à removes the incentive for moving 𝑟% outside of the interval 1 − 𝜖, 1 + 𝜖

§ We take the minimum of the clipped and unclipped objective
à the final objective is a lower bound (i.e., a pessimistic bound) on the unclipped objective

69

See also: https://spinningup.openai.com/en/latest/algorithms/ppo.html

= 𝑔 𝜖, i𝐴4 𝑠, 𝑎 𝑔 𝜖, i𝐴4 = l 1 + 𝜖 𝐴, if	𝐴 ≥ 0
1 − 𝜖 𝐴, if	𝐴 < 0



Proximal Policy Optimization (PPO)

§ The clipping operator is a pessimistic bound of the unclipped objective

§ Plot show a single timestep of the surrogate function 𝐿eLf' as a function of 𝑟
§ The red circle shows the starting point for the optimization, i.e., 𝑟 = 1
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3 Clipped Surrogate Objective

Let rt(�) denote the probability ratio rt(�) = ⇡✓(at | st)
⇡✓old

(at | st) , so r(�old) = 1. TRPO maximizes a

“surrogate” objective

LCPI(�) = Êt


�✓(at | st)

�✓old(at | st)
Ât

�
= Êt

h
rt(�)Ât

i
. (6)

The superscript CPI refers to conservative policy iteration [KL02], where this objective was pro-
posed. Without a constraint, maximization of LCPI would lead to an excessively large policy
update; hence, we now consider how to modify the objective, to penalize changes to the policy that
move rt(�) away from 1.

The main objective we propose is the following:

LCLIP (�) = Êt

h
min(rt(�)Ât, clip(rt(�), 1 � �, 1 + �)Ât)

i
(7)

where epsilon is a hyperparameter, say, � = 0.2. The motivation for this objective is as follows. The
first term inside the min is LCPI . The second term, clip(rt(�), 1��, 1+�)Ât, modifies the surrogate
objective by clipping the probability ratio, which removes the incentive for moving rt outside of the
interval [1 � �, 1 + �]. Finally, we take the minimum of the clipped and unclipped objective, so the
final objective is a lower bound (i.e., a pessimistic bound) on the unclipped objective. With this
scheme, we only ignore the change in probability ratio when it would make the objective improve,
and we include it when it makes the objective worse. Note that LCLIP (�) = LCPI(�) to first order
around �old (i.e., where r = 1), however, they become di�erent as � moves away from �old. Figure 1
plots a single term (i.e., a single t) in LCLIP ; note that the probability ratio r is clipped at 1 � �
or 1 + � depending on whether the advantage is positive or negative.

r

LCLIP

0 1 1 + ε

A > 0

r

LCLIP

0 11− ε

A < 0

Figure 1: Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as a function of
the probability ratio r, for positive advantages (left) and negative advantages (right). The red circle on each
plot shows the starting point for the optimization, i.e., r = 1. Note that LCLIP sums many of these terms.

Figure 2 provides another source of intuition about the surrogate objective LCLIP . It shows how
several objectives vary as we interpolate along the policy update direction, obtained by proximal
policy optimization (the algorithm we will introduce shortly) on a continuous control problem. We
can see that LCLIP is a lower bound on LCPI , with a penalty for having too large of a policy
update.
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Figure 2 provides another source of intuition about the surrogate objective LCLIP . It shows how
several objectives vary as we interpolate along the policy update direction, obtained by proximal
policy optimization (the algorithm we will introduce shortly) on a continuous control problem. We
can see that LCLIP is a lower bound on LCPI , with a penalty for having too large of a policy
update.
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See also: https://spinningup.openai.com/en/latest/algorithms/ppo.html



Proximal Policy Optimization (PPO)

§ Automated Tuning of the gradient step without calculating the Hessian
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Advantage Clipping for
conservative policy updates

See also: https://spinningup.openai.com/en/latest/algorithms/ppo.html



Proximal Policy Optimization (PPO)

§ Results of PPO-clip:
§ Against well-known competitors
§ On well-known environments

§ Those results are impressive!
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Proximal Policy Optimization (PPO)
Practical Considerations

§ There is two alternating threads in PPO:
1. Policy interacts with the environment, collects data and computes advantage estimates (using fitted baselines estimates)
2. 2nd thread collects all the experiences and runs SGD to optimize the policy using the clipped objective
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finite-horizon estimators in [Mni+16]. If using a neural network architecture that shares parameters
between the policy and value function, we must use a loss function that combines the policy
surrogate and a value function error term. This objective can further be augmented by adding
an entropy bonus to ensure su�cient exploration, as suggested in past work [Wil92; Mni+16].
Combining these terms, we obtain the following objective, which is (approximately) maximized
each iteration:

LCLIP+V F+S
t (�) = Êt

⇥
LCLIP
t (�) � c1L

V F
t (�) + c2S[�✓](st)

⇤
, (9)

where c1, c2 are coe�cients, and S denotes an entropy bonus, and LV F
t is a squared-error loss

(V✓(st) � V targ

t )2.
One style of policy gradient implementation, popularized in [Mni+16] and well-suited for use

with recurrent neural networks, runs the policy for T timesteps (where T is much less than the
episode length), and uses the collected samples for an update. This style requires an advantage
estimator that does not look beyond timestep T . The estimator used by [Mni+16] is

Ât = �V (st) + rt + �rt+1 + · · · + �T�t+1rT�1 + �T�tV (sT ) (10)

where t specifies the time index in [0, T ], within a given length-T trajectory segment. Generalizing
this choice, we can use a truncated version of generalized advantage estimation, which reduces to
Equation (10) when � = 1:

Ât = �t + (��)�t+1 + · · · + · · · + (��)T�t+1�T�1, (11)

where �t = rt + �V (st+1) � V (st) (12)

A proximal policy optimization (PPO) algorithm that uses fixed-length trajectory segments is
shown below. Each iteration, each of N (parallel) actors collect T timesteps of data. Then we
construct the surrogate loss on these NT timesteps of data, and optimize it with minibatch SGD
(or usually for better performance, Adam [KB14]), for K epochs.

Algorithm 1 PPO, Actor-Critic Style

for iteration=1, 2, . . . do
for actor=1, 2, . . . , N do

Run policy �✓old in environment for T timesteps

Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L wrt �, with K epochs and minibatch size M � NT
�old � �

end for

6 Experiments

6.1 Comparison of Surrogate Objectives

First, we compare several di�erent surrogate objectives under di�erent hyperparameters. Here, we
compare the surrogate objective LCLIP to several natural variations and ablated versions.

No clipping or penalty: Lt(�) = rt(�)Ât

Clipping: Lt(�) = min(rt(�)Ât, clip(rt(�)), 1 � �, 1 + �)Ât

KL penalty (fixed or adaptive) Lt(�) = rt(�)Ât � � KL[�✓old , �✓]

5



Proximal Policy Optimization (PPO)
PPO in Action: OpenAI Five on DOTA II

74 https://openai.com/blog/openai-five/



Proximal Policy Optimization (PPO)
Practical Considerations

§ One more thing….

§ PPO combines a few more things in the final objective: 

𝐿%eLf'9:d9u 𝜃 = �𝔼% 𝐿%eLf' 𝜃 − 𝑐8𝐿%:d 𝜃 + 𝑐4𝑆 𝜋! 𝑠%

§ Note: you likely need similar features to represent the policy and the state-values
à OpenAI Five shares parameters between the policy network and the value network
à Both error terms are combined in a single loss function
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entropy bonus
(exploration)Sqared error loss for

𝑉' 𝑠A − 𝑉A
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clipped
surrogate objective



Proximal Policy Optimization (PPO)
PPO in Action: OpenAI Five vs. DOTA II
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https://intellabs.github.io/coach/components/agents/policy_optimization/ppo.html

shared params



https://openai.com/projects/five/

Proximal Policy Optimization (PPO)
PPO in Action: OpenAI Five vs. DOTA II
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Proximal Policy Optimization (PPO)
PPO in Action: OpenAI Five vs. DOTA II

§ High-level info:
§ 180 years of self-play per day and hero (~900 yrs/day), no human data
§ Running on 256 P100 GPUs and 128,000 CPU cores 

§ Technical stats:
§ Observation size: ~36.8kB @ ~7Hz
§ Batch size: 1,048,576 observations = 36 GB J
§ Separate single-layer, 1024 unit LSTM per hero
§ See https://openai.com/blog/openai-five/ for an interactive demo!
§ Reward: net worth, kills, deaths, assist, last hits, etc.
§ ”Team spirit” – trade own rewards over team reward (heroes do not communicate)

§ Challenge: exploring combinatorial-vast space of combining actions w/ long planning horizons
§ 80% of games against itself, 20% against past selves (avoid “strategy collapse”)
§ After several hours: concepts such as laning, farming or fighting emerged
§ After several days: basic human strategies such as steal bounty runes from opponents, rotate heroes around the map to 

gain lane advantage etc.
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Policy-based RL
Agenda

§ Policy-based RL 1
§ Intro to Policy-based RL
§ Policy Gradients

§ Policy-based RL 2
§ Variance & Baselines
§ Actor-Critics
§ Trust-Region Policy Optimization (TRPO)
§ Proximal Policy Optimization (PPO)

§ Deep Deterministic Policy Gradient (DDPG)
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Deep Deterministic Policy Gradient (DDPG)

Question: can we also use ideas from value-based RL for continuous action spaces?
§ Why can’t we use Q-Learning and DQNs?
à Not so easily!

But what was the original problem with Q-Learning?
§ Q-Learning and variants (including DQNs) do not work with continuous actions
§ Why is that? Remember:

§ We calculated the targets 𝑟% + 𝛾 ⋅ max(#∈𝒜
R𝑄(𝑠A, 𝑎A; 𝜃R,8) by a single pass through the network

§ Our network was “static” and had 𝒜 outputs

§ Evaluating a continuous action space requires an exhaustive search over the available actions
(and this becomes highly non-trivial!)1
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1 However, see approaches such as Lim et al.: Actor-Expert: A Framework for using Q-learning in Continuous Action Spaces. 



Deep Deterministic Policy Gradient (DDPG)

§ DDPG learns a Q-function and a policy 
§ Off-policy data + Bellman equation to learn Q-function
§ Make use of the Q-function to learn the policy

§ The intuition relies on Q-learning:
§ If you know 𝑄∗ 𝑠, 𝑎 then in each state the optimal action 𝑎∗ 𝑠 can be simply found by

𝑎∗ 𝑠 = argmax
(
𝑄∗(𝑠, 𝑎)

§ DDPG jointly learns approximations to 𝑄∗ 𝑠, 𝑎 and 𝑎∗ 𝑠

…and specifically adapts this for continuous action spaces!
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Deep Deterministic Policy Gradient (DDPG)
Main idea

§ We assume the function 𝑄∗ 𝑠, 𝑎 to be differentiable with respect to 𝑎
§ This allows for a gradient-based learning rule for a policy 𝜇 𝑠 that exploits this

§ Instead of exhaustively looking for max
(
𝑄 𝑠, 𝑎 we approximate it:

max
(
𝑄 𝑠, 𝑎 ≈ 𝑄(𝑠, 𝜇 𝑠 )

§ We look at two sides of DDPG:
1. Its Q-Learning side
2. Its policy gradient side
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Deep Deterministic Policy Gradient (DDPG)
The Q-Learning side of DDPG

§ Recap the Bellman optimality equation:
 

𝑄∗ 𝑠, 𝑎 = 𝔼/#~' 𝑟 𝑠, 𝑎 + 𝛾max
(
𝑄∗ 𝑠A, 𝑎A

§ Then we can optimize the mean-squared Bellman error (MSBE) (neural network parameters 𝜙, set of transitions 𝐷, 𝑑 ∈
{0; 1} indicates if 𝑠A is terminal):

𝐿 𝜙,𝐷 = 𝔼 /,(,D,/#,I) ~w 𝑄. 𝑠, 𝑎 − 𝑟 + 𝛾 1 − 𝑑 max
(#

𝑄. 𝑠A, 𝑎A
4

§ For optimization using SGD we apply the well-known tricks:
§ Replay buffers (off-policy!)
§ Use target networks and update it with delay by 𝜙%(Dx ← 𝑝𝜙%(Dx + 1 − 𝑝 𝜙, 	𝑝 ∈ 0; 1
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Deep Deterministic Policy Gradient (DDPG)
The Q-Learning side of DDPG

§ Calculating the max over the actions in the target:

§ Target policy network 𝜇!	computes an action that approximately maximizes 𝑄."@EF
§ Target policy updates also computed using polyak averaging (see above)
§ Q-Learning in DDPG minimizes using SGD:

𝐿 𝜙,𝐷 = 𝔼 /,(,D,/#,I ~w 𝑄. 𝑠, 𝑎 − 𝑟 + 𝛾 1 − 𝑑 𝑄."@EF 𝑠A, 𝜇!"@EF 𝑠
A

4
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Deep Deterministic Policy Gradient (DDPG)

§ Policy 𝜇! 𝑠 is deterministic

§ 𝜇! 𝑠 should return the action that maximizes 𝑄. 𝑠, 𝑎
§ Action space is continuous, and we assume 𝑄 to be differentiable with respect to actions 𝑎

§ Hence, we can use gradient ascent (with respect to the policy parameters 𝜃 only) and solve:

max
!
𝔼/~w 𝑄. 𝑠, 𝜇!(𝑠) 	

(Q-function parameters 𝜙 are treated as constants here)
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The Policy Learning side of DDPG: simple



Deep Deterministic Policy Gradient (DDPG)

§ DDPG trains off-policy; policy is deterministic
§ Hence an on-policy exploration is often not enough
§ Solution: add noise to the actions at training time

§ Originally time-correlated Ornstein-Uhlenbeck (OU) process noise has been proposed
§ More recent work suggests to use zero-mean Gaussian noise as it is simpler and exhibits same performance
§ Over the course of training, we may reduce the scale of noise (but there is only a limited effect from this)
§ At test time we (of course) omit to add the noise
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Deep Deterministic Policy Gradient (DDPG)
Pseudo Code
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Use target networks (as in DQN)
for both the actor and the critic

As we don’t have a stochastic policy, 
we have to define a process for 
exploration

Execute action, store transition in the 
replay buffer and sample at random 
some transitions (exactly as in DQN)

Update critic using the target networks 
for both the Actor and the Critic

Update the Actor using the 
Deterministic Policy Gradient Theorem 
(Silver et al. 2014)

Progressively update the target 
networks



Deep Deterministic Policy Gradient (DDPG)

§ Special case in actor-critic-algorithms:
§ Works only for continuous action spaces
§ Is an off-policy algorithm utilizing the replay buffer trick from DQN
§ Solves for deterministic policies instead of stochastic ones

+ impressive results both in simulation and in real world problems
+ one of the de-facto algorithms to use for continuous (or very large) action spaces
- very sensitive to the exploration process
- can be hard to tune – sensitive to hyperparameters
- slower (wall clock time) compared to other actor-critic-algorithms
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Summary



References

Policy-based Reinforcement Learning:
§ Deisenroth, M. P., Neumann, G., & Peters, J. (2013). A survey on policy search for robotics. Foundations and Trends® in Robotics, 2(1–2), 1-

142: https://spiral.imperial.ac.uk/bitstream/10044/1/12051/7/fnt_corrected_2014-8-22.pdf

§ Sigaud, O., & Stulp, F. (2019). Policy search in continuous action domains: an overview. Neural Networks. ArXiv: https://arxiv.org/pdf/1803.04706.pdf 
§ Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In Advances in 

neural information processing systems (pp. 1057-1063). Link: http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-
approximation.pdf 

§ Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems (pp. 1531-1538). Link: http://papers.nips.cc/paper/2073-a-
natural-policy-gradient.pdf 

§ Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016, June). Benchmarking deep reinforcement learning for continuous control. In International 
Conference on Machine Learning (pp. 1329-1338): http://proceedings.mlr.press/v48/duan16.pdf

§ Riedmiller, M., Peters, J., & Schaal, S. (2007, April). Evaluation of policy gradient methods and variants on the cart-pole benchmark. In 2007 IEEE International 
Symposium on Approximate Dynamic Programming and Reinforcement Learning (pp. 254-261). IEEE. link: 
http://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/ADPRL2007-Peters2_[0].pdf 

§ Kober, J., & Peters, J. R. (2009). Policy search for motor primitives in robotics. In Advances in neural information processing systems (pp. 849-856). Link: 
https://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics

§ Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4), 229-256.
§ Vlassis, N., Toussaint, M., Kontes, G., & Piperidis, S. (2009). Learning model-free robot control by a Monte Carlo EM algorithm. Autonomous Robots, 27(2), 123-130.

89



Actor-Critics:
§ Deep RL Bootcamp 2017:

§ Pieter Abbeel: Policy Gradients (Lecture 4A), Aug. 26th, 2017

§ Andrej Karpathy: Pong from Pixels (Lecture 4b), Aug. 26th, 2017
§ https://www.janisklaise.com/post/rl-policy-gradients/
§ OpenAI Spinning Up: “Vanilla Policy Gradient”. https://spinningup.openai.com/en/latest/algorithms/vpg.html
§ OpenAI Spinning Up: “Intro to Policy Optimization”. https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#other-forms-of-the-policy-gradient

§ Williams, Ronald J.: Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Machine Learning 8:229-256.

Trust-Region Policy Optimization (TRPO):
§ Pascal Poupart: CS885 Lecture 14c: Trust Region Methods

§ Sergey Levine: CS285: Advanced Policy Gradients
§ In-depth Research Paper Review: https://www.youtube.com/watch?v=CKaN5PgkSBc

References

90

https://www.youtube.com/watch?v=CKaN5PgkSBc

