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What today will be about
Combination of two of the latest research fields: RL and Quantum Computing
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(Deep) Reinforcement Learning Quantum Computing

https://www.wevolver.com/article/datadriven.deep.reinforcement.learning https://www.ibm.com/blogs/digitale-perspektive/2021/06/quantum-opening-in-ehningen/

Quantum Reinforcement Learning

Enhance RL algorithms with concepts from quantum computing – a novel (and potentially more powerful) 

computing paradigm based on quantum mechanics



Quantum Computing – Sounds like Science Fiction?!
It is not!
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https://de.newsroom.ibm.com/ibm-dach-special-coverage-Fraunhofer-IBM

IBM Quantum System One in Ehningen, Germany Quantum computers are reality since a few years

 You can experiment with some of them yourself: 
https://www.ibm.com/quantum

 A lot of research is going on to develop soft- and 
hardware

 Promise to revolutionize computing in different fields

 Cryptography

 Simulation

 Optimization

 Machine Learning

 …

 Still in very early stages of development

 but just take a look at classical computers in e.g. the 70’s

https://www.ibm.com/quantum


Outline
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Quantum Computing
Let’s start
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https://www.youtube.com/watch?v=JhHMJCUmq28



Quantum Computing
A bit more formal: Qubits and Superpositions
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Simplified!



Quantum Computing
A bit more formal: Measurement and State Evolution
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Quantum Computing
Making it more visual: Quantum Circuits
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Quantum Computing
Promising prospects, but currently still quite limited
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Quantum Reinforcement Learning
Variational Quantum Circuits (VQCs)
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Quantum Reinforcement Learning
Variational Quantum Circuits (VQCs) – How and Why?
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https://towardsdatascience.com/self-learning-ai-agents-iv-

stochastic-policy-gradients-b53f088fce20

 VQCs are potentially more ‘powerful’ 
function approximators then DNNs:

 Access to exponentially large Hilbert space

 Reduction in parameter complexity

 Reduction in sampling complexity (less 
interaction with environment)

 Allow to work with ‘quantum data’

 Allow to make use of NISQ hardware

 Believed to somewhat ‘intrinsically’ learn 
and adapt to noise

 More on concrete working principles later!



Quantum Reinforcement Learning
Outlook: A broad field with many different ideas
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N. Meyer et al., A Survey on Quantum Reinforcement Learning,

arXiv:2211.03464 (2022).

today
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Policy-based Reinforcement Learning
Recap: Where it fits in the grand scheme 
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Policy-based Reinforcement Learning
Recap: Where it differs from value-function approximation
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• Previously we approximated parametric value functions:

𝑣𝑤 𝑠 ≈ 𝑣π 𝑠
𝑞𝑤 𝑠, 𝑎 ≈ 𝑞𝜋 𝑠, 𝑎

• A policy can be generated from these values

• Instead: Directly parameterize the policy

𝜋𝜃 𝑎 𝑠 = 𝑝 𝑎 𝑠; 𝜃

• We still focus on model-free reinforcement learning

Goal: find 𝜽 that maximizes long term reward

Action

(𝑎𝑡)

Next State

(𝑠𝑡+1)

Reward

(𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1))

Environment

Policy

(𝜋 𝑎𝑡 𝑠𝑡; 𝜽))



Policy-based Reinforcement Learning
Recap: Advantages and Disadvantages
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Advantages:

• Good convergence properties

• Easily extended to high-dimensional or continuous state and action spaces

• Can learn stochastic policies

• Sometimes policies are simple while values and models are complex

• e.g., rich domain, but optimal is always to go left

Disadvantages:

• Susceptible to local optima (especially with non-linear FA)

• Obtained knowledge is specific, does not always generalize well

• Ignores a lot of information in the data (when used in isolation)



Policy-based Reinforcement Learning
Recap: Stochastic policies
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We have seen deterministic policies like this:

State gives 𝑄 𝑠, 𝑎;𝑤 and we selected 𝜋 𝑎|𝑠 by argmax𝑎 𝑄(𝑠, 𝑎;𝑤)

Instead, stochastic policies do something like this:

𝜋 𝑎|𝑠 = ℙ 𝑎|𝑠; 𝜃

 optimal policy might be stochastic

https://towardsdatascience.com/self-learning-ai-

agents-iv-stochastic-policy-gradients-b53f088fce20

(policy is represented as a probability distribution)



Policy-based Reinforcement Learning
Recap: Smooth policy improvement
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• Learn directly a policy without calculating value functions in between

• Why?

• Greedy updates

𝜃𝑛+1 = argmax
𝜃

𝐸𝜋𝜃{𝑄
𝜋 𝑠, 𝑎 }

• Smooth updates

𝜃𝑛+1 = 𝜃𝑛 + 𝛼𝑛𝛻𝐺𝜃𝑛

𝑄𝜋 𝜋 𝑄𝜋 𝜋

Small 

Change

Large 

Change

Large 

Change
Large 

Change

Reminder:

G = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + 𝛾3𝑟3 +⋯ = ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡

Stable learning process with 

smooth policy improvement
𝑄𝜋 𝜋 𝑄𝜋 𝜋

Small 

Change

Small 

Change
Small

Change

Small 

Change

Potentially unstable learning 

process with large policy “jumps”



Policy Gradients
Recap: Maximize expected reward…
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• Assume a state-action sequence in a complete trajectory with T steps (with 𝑠𝑇 being a terminal state):

𝜏 = 𝑠0, 𝑎0, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇

• As usual:

• 𝑅 𝑠𝑡, 𝑎𝑡 is the reward received after observing 𝑠𝑡 and performing action 𝑎𝑡

• 𝐺 𝜏 ≔ σ𝑡=0
𝑇−1 𝛾𝑡𝑅 𝑠𝑡, 𝑎𝑡 is the (discounted) sum of rewards (return)

• Our goal is to maximize the expected reward:

max
𝜃

𝔼𝜋𝜃 𝐺 𝜏

(where 𝜋𝜃 is a parameterized policy, e.g., a neural network)



Policy Gradients
Recap: … via gradient ascent
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• But how do we maximize this? 

 Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

𝛻𝜃𝔼𝜏~𝜋𝜃𝐺 𝜏

• Then we can update our parameters 𝜃 in the direction of the gradient:

𝜃 ← 𝜃 + 𝛼𝛻𝜃𝔼𝜏~𝜋𝜃𝐺 𝜏

• Search for a local maximum in 𝐽(𝜃) by ascending

the gradient of the policy w.r.t. the parameters 𝜃:

∆𝜃 = 𝛼𝛻𝜃𝐽 𝜃

Policy Gradient

often in literature 

referred to as 𝛻𝜃𝐽 𝜋𝜃

𝜕𝐽 𝜃

𝜕𝜃1
⋮

𝜕𝐽 𝜃

𝜕𝜃𝑛step-size



Policy Gradients
Recap: Reformulating the gradient
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Let 𝑃 𝜏|𝜃 be the probability of a trajectory 𝜏 under policy 𝜋𝜃, then

𝛻𝜃𝔼𝜏~𝜋𝜃𝐺 𝜏 = 𝛻𝜃෍

𝜏

𝑃 𝜏|𝜃 𝐺 𝜏

𝛻𝜃𝔼𝜏~𝜋𝜃𝐺 𝜏 = ⋯

𝛻𝜃𝔼𝜏~𝜋𝜃𝐺 𝜏 = 𝔼𝜏~𝜋𝜃 𝛻𝜃 log 𝑃 𝜏|𝜃 𝐺 𝜏

𝛻𝜃𝔼𝜏~𝜋𝜃𝐺 𝜏 = 𝔼𝜏~𝜋𝜃 ෍

𝑡=0

𝑇

𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 𝐺(𝜏)

𝜏 ≈
1

𝐿
σ𝜏σ𝑡=0

𝑇 𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 𝐺 𝜏

𝜏 ≈
1

𝐿
σ𝜏σ𝑡=0

𝑇 𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 σ𝑡′=𝑡
𝑇 𝛾𝑡

′−𝑡𝑅 𝑠𝑡′ , 𝑎𝑡′

Intuition: The gradient tries to 

• Increase probability of paths with 

positive 𝐺

• Decrease probability of paths with 

negative 𝐺

Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.



Policy Gradients
Recap: REINFORCE
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



Policy Gradients
Recap: Natural Policy Gradients
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Peters et al.: Natural Actor-Critic. 2018

• First-order derivatives approximate the (parameter) surface to be flat

• But if the surface exhibits high curvature it gets dangerous

 Small changes in parameter space might lead to large changes in policy space!

What we essentially do

(optimization perspective on 1st order gradient descent)
What we want to do

(incorporate 2nd order information)

𝜃′ ← argmax
𝜃′

𝜃′ − 𝜃 𝑇𝛻𝜃𝐽 𝜃 , subject to 𝜃′ − 𝜃 2 ≤ 𝜖 𝜃′ ← argmax
𝜃′

𝜃′ − 𝜃 𝑇𝛻𝜃𝐽 𝜃 , subject to 𝜃′ − 𝜃 𝑭
2 ≤ 𝜖

 𝜃 ← 𝜃 + 𝛼𝐅−1𝛻𝜃𝐽 𝜃 with e.g. KL-divergence
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Quantum Policy Gradients
“Quantified” version of REINFORCE
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S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning,

NeurIPS 34, 28362-28375 (2021).



Quantum Policy Gradients
Replace function approximator
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https://towardsdatascience.com/self-learning-ai-agents-iv-

stochastic-policy-gradients-b53f088fce20



Quantum Policy Gradients
How to encode the environment state into the quantum circuit? [1/2]
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Chen et al., Variational Quantum Circuits for Deep Reinforcement Learning, IEEE Access 8, 141007-141024 (2020).



Quantum Policy Gradients
How to encode the environment state into the quantum circuit? [2/2]
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Lockwood and Si, Reinforcement Learning with Quantum Variational Circuits, AAAI Conference on AI and Interactive Digital Entertainment 16.1 (2020).



Quantum Policy Gradients
Learnable parameters and gradients
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S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).

https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift.html



Quantum Policy Gradients
Measurements and policies [1/2]
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Quantum Policy Gradients
Measurements and policies [2/2]
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S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).



Quantum Policy Gradients
Some experimental result
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S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).



Quantum Policy Gradients
(Empirical) parameter complexity
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Lockwood and Si, Reinforcement Learning with Quantum Variational Circuits, AAAI Conference on AI and Interactive Digital Entertainment 16.1 (2020).

Chen et al., Variational Quantum Circuits for Deep Reinforcement Learning, IEEE Access 8, 141007-141024 (2020).



Quantum Policy Gradients
Provable quantum advantage
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Y. Liu et al., A rigorous and robust quantum speed-up in supervised machine learning, Nat. Phys. 17, 1013-1017 (2021).



Extension #1: Classical Post-Processing
Improving convergence by “good” mapping from basis states to actions
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N. Meyer et al., Quantum Policy Gradient Algorithm with Optimized Action Decoding,

40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA (2023).



Extension #1: Classical Post-Processing
Overview QPG algorithm
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1. Quantum state is measured in 

the computational basis

2. Results are post-processed

with a function maximizing our

proposed globality measure

3. An action is selected

4. Update of the parameters

utilizes the same post-

processing scheme



Extension #1: Classical Post-Processing
Different possibilities to partition basis states

37

prepared quantum state

Action 0 Action 1

Action 0 Action 1



Extension #1: Classical Post-Processing
Switch from basis states to bitstrings
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Measured bitstring



Extension #1: Classical Post-Processing
Introducing globality measure [1/2]
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This consideration has some flaws…

• only describes border cases for 𝐴 = 2

• global measurement can be expressed 

as local measurement on ancilla qubit: 



Extension #1: Classical Post-Processing
Introducing globality measure [2/2]
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“Average amount of information

necessary to have an unambigious

distinction between actions.“



Extension #1: Classical Post-Processing
Post-processing that optimizes globality measure

41



Extension #1: Classical Post-Processing
Why we did all of this? Improved RL performance (exemplary on CartPole-v0)!
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Extension #1: Classical Post-Processing
Additional performance measures

43

A. Abbas et al., The power of quantum neural networks, Nat. Comput. Sci. 1, 403-409 (2021)



Extension #1: Classical Post-Processing
Training on actual quantum device!
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Hardware architecture (ibmq_manila)

Policy learned on quantum device



Extension #2: Quantum Natural Gradients
Extending with second-order updates

45

N. Meyer et al., Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement Learning, 

arXiv:2304.13571 (2023).



Extension #2: Quantum Natural Gradients
Reminder: Underlying idea of natural gradients
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Schematic effect of natural gradient update on parameter space



Extension #2: Quantum Natural Gradients
(Approximated) Quantum Fisher Information

47

J. Stokes et al., Quantum Natural Gradient, Quantum 4, 269 (2020).



Extension #2: Quantum Natural Gradients
QNPG Algorithm
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Extension #2: Quantum Natural Gradients
Simple experimental setup [1/2]
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Extension #2: Quantum Natural Gradients
Simple experimental setup [2/2]
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Extension #2: Quantum Natural Gradients
Results for random initialization
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Extension #2: Quantum Natural Gradients
A closer look at specific initializations [1/2]
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Extension #2: Quantum Natural Gradients
A closer look at specific initializations [2/2]
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Near Minimum:

Distorted Region:

Maximum



Extension #2: Quantum Natural Gradients
Larger-scale hardware experiment on 12 qubits [1/2]
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https://quantum-computing.ibm.com/https://quantum-computing.ibm.com/



Extension #2: Quantum Natural Gradients
Larger-scale hardware experiment on 12 qubits [2/2]
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Summary
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Quantum Reinforcement Learning
A field with great potential but also a lot of unsolved problems
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(Deep) Reinforcement Learning Quantum Computing

Quantum Reinforcement Learning

Vanilla Quantum Policy Gradients (QPG) QPG with optimized

(classical) action decoding

Quantum Natural Policy 
Gradients (QNPG)



Additional references for delving deeper

 The ‘bible’ of QC: M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, 
http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf (2000).

 A bit easier digestible: N. D. Mermin, Quantum Computer Science: An Introduction, 
https://library.uoh.edu.iq/admin/ebooks/22831-quantum_computer_science.pdf (2007).

 Somewhere in-between the two others: P. Kaye et al., An Introduction to Quantum Computing, 
http://mmrc.amss.cas.cn/tlb/201702/W020170224608149125645.pdf (2007).

 Video lecture by John Preskill (one of the entities in the field): 
https://www.youtube.com/watch?v=w08pSFsAZvE&list=PL0ojjrEqIyPy-1RRD8cTD_lF1hflo89Iu

 Lecture notes by Scott Aaronson (probably THE quantum computing blogger): https://scottaaronson.blog/?p=3943

 Video lecture by Michael Hartmann (more physics-focused than the others): https://www.fau.tv/course/id/846

 Overview of several concepts from QML (but not up to date anymore): M. Schuld and F. Pettrocione, Supervised Learning 
with Quantum Computers, http://ndl.ethernet.edu.et/bitstream/123456789/73371/1/320.pdf (2018).

 A closer look what might be possible with current-day hardware: J. Preskill, Quantum Computing in the NISQ era and 
beyond, https://quantum-journal.org/papers/q-2018-08-06-79/ (2018).

 Same as previous, but bit more up to date: K. Bharti et al., Noisy intermediate-scale quantum algorithms, 
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.015004 (2022).

 Our survey : N. Meyer et al., A Survey on Quantum Reinforcement Learning, https://arxiv.org/abs/2211.03464 (2022).
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http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf
https://library.uoh.edu.iq/admin/ebooks/22831-quantum_computer_science.pdf
http://mmrc.amss.cas.cn/tlb/201702/W020170224608149125645.pdf
https://www.youtube.com/watch?v=w08pSFsAZvE&list=PL0ojjrEqIyPy-1RRD8cTD_lF1hflo89Iu
https://scottaaronson.blog/?p=3943
https://www.fau.tv/course/id/846
http://ndl.ethernet.edu.et/bitstream/123456789/73371/1/320.pdf
https://quantum-journal.org/papers/q-2018-08-06-79/
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.015004
https://arxiv.org/abs/2211.03464

