

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Lecture 8: Quantum Reinforcement Learning

Nico Meyer (Guest Lecture)

What today will be about

Combination of two of the latest research fields: RL and Quantum Computing

Quantum Reinforcement Learning

Enhance RL algorithms with concepts from quantum computing – a novel (and potentially more powerful) computing paradigm based on quantum mechanics

Quantum Computing – Sounds like Science Fiction?! It is not!

- Quantum computers are reality since a few years
 - You can experiment with some of them yourself: <u>https://www.ibm.com/quantum</u>
 - A lot of research is going on to develop soft- and hardware
- Promise to revolutionize computing in different fields
 - Cryptography
 - Simulation
 - Optimization
 - Machine Learning
 - · · · ·
- Still in very early stages of development
 - but just take a look at classical computers in e.g. the 70's

IBM Quantum System One in Ehningen, Germany

https://de.newsroom.ibm.com/ibm-dach-special-coverage-Fraunhofer-IBM

Let's start

https://www.youtube.com/watch?v=JhHMJCUmq28

A bit more formal: Qubits and Superpositions

A qubit is the pendant to the classical bit. The two basis states are:

$$|0\rangle \mapsto \begin{bmatrix} 1\\ 0 \end{bmatrix} \text{ and } |1\rangle \mapsto \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

It can be in a superposition of those states:

$$\alpha |0\rangle + \beta |1\rangle \mapsto \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
 with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$

A *n*-qubits system gives us access to an Hilbert space of dimension 2^n :

$$|\psi\rangle = c_0 |0...00\rangle + c_0 |0...01\rangle + \dots + c_{2^n - 1} |1...11\rangle, c_i \in \mathbb{C}, \sum_{i=0}^{2^n - 1} |c_i|^2 = 1$$

Simplified!

 \hookrightarrow A quantum computer allows us to process 2^n complex numbers at once!

A bit more formal: Measurement and State Evolution

Measurement on system $|\psi\rangle$

- destroys the superposition, $|\psi\rangle$ collapses to basis state
- measurement result is inherently random
- $|\psi\rangle$ collapses with probability $|c_i|^2$ to basis state $|i\rangle$
- \hookrightarrow it requires a 'clever' combination of superposition, entanglement, and interference to make use of quantum computing

State manipulation:

Reversible (unitary operators), e.g. flip amplitudes with $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Making it more visual: Quantum Circuits

Step 1: Hadamard gate on first qubit

$$(H \otimes I) |00\rangle \rightarrow \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} =$$

Step 2: Controlled-NOT gate in both qubits

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \rightarrow \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

Creating maximally entangeled Bell state

$$\frac{1}{\sqrt{2}}\left(\left|00\right\rangle+\left|11\right\rangle\right)$$

 $|00\rangle$ $|11\rangle$

Promising prospects, but currently still quite limited

Provable **Quantum advantage** (potentially) exists in several areas:

- Material Science
- Optimization
- Machine Learning
- Simulation

• Cryptography

• • • •

Currently only "Noisy Indermediate-Scale Quantum" (NISQ) devices

- Quantum systems are very instable (\hookrightarrow error correction)
- Largest quantum device only has 433 qubits (\hookrightarrow enigneering overhead)

Variational Quantum Circuits (VQCs)

Figure: VQ-DQL with four qubits and one learnable block

Encode state into VQC

- depends on specific task
- (in general) not learnable

Measurement

used for action selection

Learnable building block

- target of iterative optimization
- CNOT gates for entanglement
- learnable single-qubit rotations
- could be repeated several times

Variational Quantum Circuits (VQCs) – How and Why?

- VQCs are potentially more 'powerful' function approximators then DNNs:
 - Access to exponentially large Hilbert space
 - Reduction in parameter complexity
 - Reduction in sampling complexity (less interaction with environment)
 - Allow to work with 'quantum data'
- Allow to make use of NISQ hardware
 - Believed to somewhat 'intrinsically' learn and adapt to noise
- > More on concrete working principles later!

Outlook: A broad field with many different ideas

	Classical Compute Resources	NISQ Resources	Universal, ault-Tolerant and Error-	Corrected Quantum Processing Unit
	classical	Degree of quantum- lassical hybridization		quantum
Algorithm Class	Quantum-inspired RL Algorithms	VQC-based Function Approximation	RL Algorithms with Quantum Subroutines	Full Quantum RL
Subtype	Amplitude-Amplification-based Action Selection	VQC-based Critic	Quantum Policy Iteration (Cherrat et al.)	Quantum Policy Iteration (Wiedemann et al.)
		VQC-based Actor	Quantum Value Iteration	Oracularized Environments
		VQC-based Actor-Critic	Projective Simulation	Quantum Gradient Estimation
		VQC-based Multi-Agent RL	Boltzmann-Machines for Function	
		VQC-based Distributional RL	Approximation	

today

N. Meyer et al., A Survey on Quantum Reinforcement Learning, arXiv:2211.03464 (2022).

Recap: Where it fits in the grand scheme

Recap: Where it differs from value-function approximation

• Previously we approximated parametric value functions:

 $v_w(s) \approx v_\pi(s)$ $q_w(s,a) \approx q_\pi(s,a)$

- A policy can be generated from these values
- Instead: Directly parameterize the policy

 $\pi_{\theta} (a|s) = p(a|s;\theta)$

We still focus on model-free reinforcement learning

Recap: Advantages and Disadvantages

Advantages:

- Good convergence properties
- Easily extended to high-dimensional or continuous state and action spaces
- Can learn stochastic policies
- Sometimes policies are simple while values and models are complex
 - e.g., rich domain, but optimal is always to go left

Disadvantages:

- Susceptible to local optima (especially with non-linear FA)
- Obtained knowledge is specific, does not always generalize well
- Ignores a lot of information in the data (when used in isolation)

Recap: Stochastic policies

We have seen deterministic policies like this:

State gives Q(s, a; w) and we selected $\pi(a|s)$ by $\operatorname{argmax}_a Q(s, a; w)$

Instead, stochastic policies do something like this:

 $\pi(a|s) = \mathbb{P}[a|s;\theta]$

(policy is represented as a probability distribution)

> optimal policy might be stochastic

https://towardsdatascience.com/self-learning-aiagents-iv-stochastic-policy-gradients-b53f088fce20

Recap: Smooth policy improvement

- Learn directly a policy without calculating value functions in between
- Why?
 - Greedy updates

 $\theta_{n+1} = \operatorname{argmax}_{\alpha} E_{\pi_{\theta}} \{ Q^{\pi}(s, a) \}$

Potentially unstable learning process with large policy "jumps"

Reminder:

$$\mathbf{G} = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \dots = \sum_{t=0}^{\infty} \gamma^t r_t$$

Stable learning process with smooth policy improvement

Recap: Maximize expected reward...

• Assume a state-action sequence in a complete trajectory with T steps (with s_T being a terminal state):

$$\tau = (s_0, a_0, \dots, s_{T-1}, a_{T-1}, s_T)$$

- As usual:
 - $R(s_t, a_t)$ is the reward received after observing s_t and performing action a_t
 - $G(\tau) := \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t)$ is the (discounted) sum of rewards (return)
- Our goal is to maximize the expected reward:

 $\max_{\theta} \mathbb{E}_{\pi_{\theta}} G(\tau)$ (where π_{θ} is a parameterized policy, e.g., a neural network)

Recap: ... via gradient ascent

• But how do we maximize this?

→ Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

 $\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} G(\tau)$ **Policy Gradient** often in literature Then we can update our parameters θ in the direction of the gradient: • referred to as $\nabla_{\theta} J(\pi_{\theta})$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} G(\tau)$ Search for a local maximum in $J(\theta)$ by ascending $\partial J(\theta)$ the gradient of the policy w.r.t. the parameters θ : $\partial \theta_1$ $\Delta \theta = \alpha \nabla_{\theta} J(\theta)$ $\partial J(\theta)$ step-size $\partial \theta_{1}$

Recap: Reformulating the gradient

Let $P(\tau|\theta)$ be the probability of a trajectory τ under policy π_{θ} , then

$$\begin{aligned} \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} G(\tau) &= \nabla_{\theta} \sum_{\tau} P(\tau | \theta) G(\tau) \\ &= \cdots \\ &= \mathbb{E}_{\tau \sim \pi_{\theta}} (\nabla_{\theta} \log P(\tau | \theta) G(\tau)) \\ &= \mathbb{E}_{\tau \sim \pi_{\theta}} \left(\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) G(\tau) \right) \\ &\approx \frac{1}{L} \sum_{\tau} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) G(\tau) \\ &\approx \frac{1}{L} \sum_{\tau} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}) \end{aligned}$$

Intuition: The gradient tries to

- Increase probability of paths with positive *G*
- Decrease probability of paths with negative *G*

Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.

Policy Gradients Recap: REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ (e.g., to **0**)

Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \ldots, T - 1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ $\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)$

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Recap: Natural Policy Gradients

- First-order derivatives approximate the (parameter) surface to be flat
- But if the surface exhibits high curvature it gets dangerous
- Small changes in parameter space might lead to large changes in policy space!

Peters et al.: Natural Actor-Critic. 2018

What we essentially do (optimization perspective on 1st order gradient descent) $\theta' \leftarrow \arg \max_{\alpha'} (\theta' - \theta)^T \nabla_{\theta} J(\theta)$, subject to $\|\theta' - \theta\|^2 \leq \epsilon$

What we want to do

(incorporate 2nd order information)

$$\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta), \text{ subject to } \|\theta' - \theta\|_F^2 \le \epsilon$$

 $\rightarrow \theta \leftarrow \theta + \alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta) \text{ with e.g. KL-divergence}$

Fraunhofer

"Quantified" version of REINFORCE

S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).

Replace function approximator

Parameterized policy: $\pi_{\boldsymbol{\theta}} : \mathcal{S} \times \mathcal{A} \mapsto [0, 1]$

Update parameters via gradient ascent: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Policy gradient theorem: $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{H-1} \nabla_{\boldsymbol{\theta}} \ln \pi_{\boldsymbol{\theta}}(a_t \mid \boldsymbol{s}_t) \cdot (G_t - b(\boldsymbol{s}_t)) \right]$

How to encode the environment state into the quantum circuit? [1/2]

computational encoding: encode binary representation of state

(optionally) removes

global phase

Lockwood and Si, Reinforcement Learning with Quantum Variational Circuits, AAAI Conference on AI and Interactive Digital Entertainment 16.1 (2020).

<u>amplitude encoding</u>: encode into amplitudes of $|\psi\rangle = \sum c_i |i\rangle$, $\sum |c_i|^2 = 1$ learned encoding: allows to incorporate more concrete objectives

Learnable parameters and gradients

we measure the expectation value $\langle O\rangle$ of some observable O at the end

S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).

Computing gradients is not possible directly \hookrightarrow wave function collaps

but can use parameter-shift rule: (special case of finite differences)

 $Gradient: \nabla_{A}(\hat{A}) = u[\langle r_{+} \rangle - \langle r_{-} \rangle]$

https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift.html

quantum state prepared by **Quantum Policy Gradients** encoding and variational layers Measurements and policies [1/2] How do we obtain information from the quantum state $|\psi_{s,\theta}\rangle$? Measure some observable (Hermitian operator) O Z_0 \hookrightarrow observe one of the eigenvalues \hookrightarrow quantum system has collapsed to associated eigenstate \hookrightarrow multiple measurements retreive expectation value $\langle O \rangle$ Typical procedure: Measure in computational basis with $O = \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ \hookrightarrow collapses to one of the basis states $|0\cdots 00\rangle$, $|0\cdots 01\rangle$, \cdots , $|1\cdots 11\rangle$

Measurements and policies [2/2]

This can be used to define the policy:

 $\pi_{\theta}(a|s) = \langle P_a \rangle_{s,\theta}$
raw-VQC policy

action-associated projectors onto computational basis states

$$\nabla_{\theta} \log \pi_{\theta}(a|s) = \frac{\nabla_{\theta} \langle P_a \rangle_{s,\theta}}{\langle P_a \rangle_{s,\theta}}$$

An alternative approach with arbitrary observables:

$$\pi_{\theta}(a|s) = \frac{e^{\beta \langle O_a \rangle_{s,\theta}}}{\sum_{a'} e^{\beta} \langle O_a \rangle_{s,\theta}}$$
 inverse-temperature parameter

S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).

Some experimental result

In simulation, no quantum hardware!

S. Jerbi et al., Parameterized Quantum Policies for Reinforcement Learning, NeurIPS 34, 28362-28375 (2021).

(a) PQC labeling function

 2π

(Empirical) parameter complexity

Not supported by theory or larger-scale experiments, take with grain of salt!

Algorithm	Encoding	Complexity	
Algorithm	Encouning	(n = size of input, N = largest value)	
Tabular Q-Learning		$\mathcal{O}(n^3)$	
	DQL	$\mathcal{O}(n^2)$	
	computational	$\mathcal{O}(n) / \mathcal{O}(n \cdot \log(N))$	
	scaled	$\mathcal{O}(n)$	
	directional	$\mathcal{O}(n)$	
	amplitude	$\mathcal{O}(\log(n))$	

Chen et al., Variational Quantum Circuits for Deep Reinforcement Learning, IEEE Access 8, 141007-141024 (2020).

Lockwood and Si, Reinforcement Learning with Quantum Variational Circuits, AAAI Conference on AI and Interactive Digital Entertainment 16.1 (2020).

Provable quantum advantage

required interactions with environment

Exponential advantage in **sampling complexity** for (artificial) problem!

Y. Liu et al., A rigorous and robust quantum speed-up in supervised machine learning, Nat. Phys. 17, 1013-1017 (2021).

QPG agent is able to identify structure in data, that has been scrabled with discrete logarithm

\hookrightarrow unfortunately far beyond capability of NISQ devices

Improving convergence by "good" mapping from basis states to actions

N. Meyer et al., **Quantum Policy Gradient Algorithm with Optimized Action Decoding**, 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA (2023).

Overview QPG algorithm

Different possibilities to partition basis states

$$|\psi_{s,\theta}\rangle = |q_0q_1q_2\rangle = \sum_{i=0}^7 c_i |i\rangle$$

prepared quantum state

$$\begin{aligned} \pi_{\theta}(a \mid s) \\ &= \langle \psi_{s,\theta} \mid \sum_{v \in \mathcal{V}_{a}} |v\rangle \langle v \mid |\psi_{s,\theta} \rangle \\ &= \sum_{v \in \mathcal{V}_{a}} \langle \psi_{s,\theta} \mid v\rangle \langle v \mid \psi_{s,\theta} \rangle \\ &= \sum_{i} |c_{a_{i}}|^{2} \end{aligned} \qquad \begin{array}{c} \mathcal{V}_{0}^{1-loc} = \begin{bmatrix} 000 \rangle \\ 001 \rangle \\ 010 \rangle \\ 011 \rangle \\ \end{array} \qquad \begin{array}{c} \mathcal{V}_{1}^{1-loc} = \begin{bmatrix} 101 \rangle \\ 110 \rangle \\ 011 \rangle \\ 111 \end{pmatrix} \\ \end{array} \qquad a = q_{0} \end{aligned}$$

$$a = q_{0} \end{aligned}$$

$$\begin{array}{c} \mathbf{Action 0} \\ \mathbf{Action 0} \\ \mathbf{Action 0} \\ \mathbf{Action 1} \\ 000 \rangle \\ 001 \rangle \\ 101 \rangle \\ 101 \rangle \\ 110 \rangle \\ 111 \end{pmatrix} \qquad a = \bigoplus_{i=0}^{n-1} q_{i} \end{aligned}$$

Switch from basis states to bitstrings

$$\boldsymbol{b} = b_{n-1}b_{n-2}\cdots b_0$$

Measured bitstring

Post-processing function: $f_{\mathcal{C}}: \{0,1\}^n \to \{0,1,\cdots,|\mathcal{A}|-1\}$ such that $f_{\mathcal{C}}(\boldsymbol{b}) = a$, iff $\boldsymbol{b} \in \mathcal{C}_a$ partition $\mathcal{C}_a \subset \mathcal{C}$ associated with action a

$$\pi_{\boldsymbol{\theta}}(a \mid \boldsymbol{s}) = \sum_{\boldsymbol{b} \in \{0,1\}^n}^{f_{\mathcal{C}}(\boldsymbol{b})=a} \langle \psi_{\boldsymbol{s},\boldsymbol{\theta}} \mid \boldsymbol{b} \rangle \langle \boldsymbol{b} \mid \psi_{\boldsymbol{s},\boldsymbol{\theta}} \rangle$$
$$\approx \frac{1}{K} \cdot \sum_{k=0}^{K-1} \delta_{f_{\mathcal{C}}(\boldsymbol{b}^{(k)})=a}$$

Introducing globality measure [1/2]

This consideration has some flaws...

- only describes border cases for |A| = 2
- global measurement can be expressed as local measurement on ancilla qubit:

$$\pi_{\theta}^{q-loc} = \frac{(-1)^a \langle \psi_{s,\theta} | Z^{\otimes q} \otimes I^{\otimes n-q} | \psi_{s,\theta} \rangle + 1}{2}$$

Introducing globality measure [2/2]

Example

 $C_{a=0} = \{0000, 0010, 0100, 0110\}$ $C_{a=1} = \{0001, 0011, 0101, 0111\}$ $C_{a=2} = \{1000, 1010, 1101, 1111\}$ $C_{a=3} = \{1001, 1011, 1100, 1110\}$

 $EI_{f_{\mathcal{C}}}(0111) = 2 \qquad (0111 \in \mathcal{C}_{a=1})$ $EI_{f_{\mathcal{C}}}(1010) = 3 \qquad (1010 \in \mathcal{C}_{a=2})$ $\hookrightarrow \text{ at least } \log_2(|\mathcal{A}|) \text{ bits}$

Definition 4.1 (extracted information). Let $f_{\mathcal{C}}$ be a classical post-processing function, with a partitioning of the set of n-bit strings $\mathcal{C} = \bigcup_a \mathcal{C}_a$, for which $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$ for all $i \neq j$. Furthermore, $\mathbf{b} = b_{n-1}b_{n-2}\cdots b_1b_0$ denotes an arbitrary bitstring. The extracted information $EI_{f_{\mathcal{C}}}(\mathbf{b}) \in \mathbb{N}$ is the minimum number of bits b_i necessary, to compute $f_{\mathcal{C}}(\mathbf{b})$, i.e. assign \mathbf{b} unambiguously to a set \mathcal{C}_a .

> "Average amount of information necessary to have an unambigious distinction between actions."

$$G_{f_{\mathcal{C}}} := \frac{1}{2^n} \sum_{\boldsymbol{b} \in \{0,1\}^n} EI_{f_{\mathcal{C}}}(\boldsymbol{b})$$

upper bound $G_{f_{\mathcal{C}}} \leq n$ (Holevo's theorem)

Post-processing that optimizes globality measure

$$m = \log_2(|\mathcal{A}| - 1) \in \mathbb{N}_0$$
$$f_{\mathcal{C}}(\boldsymbol{b}) = \left[b_0 \cdots b_{m-1} \left(\bigoplus_{i=m}^{n-1} b_i\right)\right]_{10}$$
decimal representation

 \hookrightarrow Lemma 1 guarantees $G_{f_{\mathcal{C}}} = n$

$$\mathcal{C}_{[a]_{2}}^{(m)} = \left\{ \boldsymbol{b} \mid \bigoplus_{i=m}^{n-1} b_{i} = a_{0} \land \boldsymbol{b} \in \mathcal{C}_{a_{m} \cdots a_{2}(a_{1} \oplus a_{0})}^{(m-1)} \right\} \qquad \qquad \mathcal{C}_{[0]_{2}}^{(0)} = \left\{ \boldsymbol{b} \mid \bigoplus_{i=0}^{n-1} b_{i} = 0 \land \boldsymbol{b} \in \{0,1\}^{n} \right\} \\ \mathcal{C}_{[1]_{2}}^{(0)} = \left\{ \boldsymbol{b} \mid \bigoplus_{i=0}^{n-1} b_{i} = 1 \land \boldsymbol{b} \in \{0,1\}^{n} \right\}$$

Lemma 1. Let an arbitrary VQC act on an n-qubit state. The RAW-VQC policy needs to distinguish between $M := |\mathcal{A}|$ actions, where M is a power of 2, i.e., $m = \log_2(M) - 1 \in \mathbb{N}_0$. Using Eqs. (13) to (15) we define

$$\pi_{\Theta}^{glob}\left(a \mid \boldsymbol{s}\right) = \sum_{v \in \mathcal{C}_{[a]_{2}}^{(m)}} \left\langle \psi_{\boldsymbol{s},\Theta} \mid v \right\rangle \left\langle v \mid \psi_{\boldsymbol{s},\Theta} \right\rangle \qquad (16)$$

$$\approx \frac{1}{K} \sum_{k=0}^{K-1} \delta_{f_{\mathcal{C}(m)}(\boldsymbol{b}^{(k)})=a}$$
(17)

where K is the number of shots for estimating the expectation value, $\mathbf{b}^{(k)}$ is the bitstring observed in the k-th shot, and δ is an indicator function. The post-processing function is guaranteed to have the globality value $G_{fc} = n$.

Why we did all of this? Improved RL performance (exemplary on CartPole-v0)!

Fraunhofer

1M

Training on actual quantum device!

Extending with second-order updates

N. Meyer et al., Quantum Natural Policy Gradients: Towards Sample-Efficient Reinforcement Learning, arXiv:2304.13571 (2023).

Reminder: Underlying idea of natural gradients

Usual gradient ascent update: $\theta \leftarrow \theta + \alpha \cdot \nabla_{\theta} \mathcal{L}(\theta)$

Problem: Does not pay attention to geometry of parameter space

 \hookrightarrow inverse of **Fisher information matrix** $F(\theta)$ to undistords parameter space: $\tilde{\nabla}_{\theta} = F(\theta)^{-1} \nabla_{\theta} \mathcal{L}(\theta)$

Schematic effect of natural gradient update on parameter space

(Approximated) Quantum Fisher Information

For quantum state $|\psi_{s,\theta}\rangle$, the Fubini-Study metric tensor (aka QFIM) is:

$$G_{ij}(\theta) = Re\left[\left\langle \frac{\partial \psi_{s,\theta}}{\partial \theta_i} \mid \frac{\partial \psi_{s,\theta}}{\partial \theta_j}\right\rangle - \left\langle \frac{\partial \psi_{s,\theta}}{\partial \theta_i} \mid \psi_{s,\theta} \right\rangle \left\langle \psi_{s,\theta} \mid \frac{\partial \psi_{s,\theta}}{\partial \theta_j} \right\rangle\right]$$

Problem: Exact evaluation not possible on quantum hardwareSolution: (Block-) Diagonal representation can be sampled

J. Stokes et al., Quantum Natural Gradient, Quantum 4, 269 (2020).

QNPG Algorithm

Pseudoinverse undistords parameter space:

$$\tilde{\nabla_{\theta}} = g(\theta)^{+} \nabla_{\theta} \mathcal{L}(\theta)$$

Increase numerical stability:

$$\hat{\eta} = \underset{\eta}{\operatorname{arg\,min}} \|g(\theta)\eta - \nabla_{\theta}\mathcal{L}(\theta)\|_{2}^{2}$$

(Optional) Regularization:

$$\hat{\eta}_{\xi} = \underset{\eta}{\operatorname{arg\,min}} \|g(\theta)\eta - \nabla_{\theta}\mathcal{L}(\theta)\|_{2}^{2} + \xi \|\eta\|_{2}^{2}$$

Algorithm 1 Quantum Natural Policy Gradients
Input: initial policy π_{θ} , batch size <i>B</i> , discount factor γ , learn-
ing rate α , termination condition
Output: policy π_{θ_*} trained to maximize long term reward
1: while termination condition not satisfied do
2: generate B trajectories $[s_0, a_0, r_0, s_1, a_1 \cdots]$ from π_{θ}
3: for all trajectories τ in batch do
4: for timestep t in $0, \dots, H-1$ do
5: compute discounted returns $G_t \leftarrow \sum_{t'=t}^{H-1} \gamma^{t'-t} r_{t'}$
6: sample first-order gradients $\nabla_{\theta} \ln \pi_{\theta}(a_t s_t)$
7: estimate Fubini-Study metric tensor $g(\theta)$
8: solve for η_t in $g(\theta)\eta_t = \nabla_{\theta} \ln \pi_{\theta}(a_t s_t)$
9: end for
10: end for
11: compute batch average $\Delta \theta \leftarrow \frac{1}{B \cdot H} \sum_{\tau} \sum_{t=0}^{H-1} \eta_t G_t$
12: perform gradient ascent update $\theta \leftarrow \theta + \alpha \Delta \theta$
13: end while

Simple experimental setup [1/2]

Simple one-qubit circuit with two parameters:

$$|0\rangle - H - R_x(s) - R_z(s) - R_z(s) - R_z(\theta_0) - R_z(\theta_1) - R_z(s) - R_z(s$$

(a) Variational quantum circuit with two learnable parameters θ_0 and θ_1 . The two states are encoded with first-order angle encoding, where state 0 is encoded as s = 0 and state 1 as s = 1.

Contextual bandit environment with two states and actions:

Simple experimental setup [2/2]

As the parameter space is only two-dimensional, the expected reward in this space can be visualized: Surface Plot of Expected Reward

A closer look at specific initializations [1/2]

(c) Initialized near minimum.

(a) Initialized in distorted region.

Natural gradients improve convergence especially in distorted regions

A closer look at specific initializations [2/2]

Natural gradient helps to traverse distorted regions in parameter space

 \hookrightarrow might be suited to defer barren plateau problem

similar to classical vanishing gradients, but much worse

Larger-scale hardware experiment on 12 qubits [1/2]

About 30 qubits can be simulated classically

sparsely entangeled VQC

(b) Parity environment.

Larger-scale hardware experiment on 12 qubits [2/2]

deteriation is caused by currently inevitable hardware noise

A field with great potential but also a lot of unsolved problems

Additional references for delving deeper

- The 'bible' of QC: M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, <u>http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf</u> (2000).
- A bit easier digestible: N. D. Mermin, Quantum Computer Science: An Introduction, <u>https://library.uoh.edu.iq/admin/ebooks/22831-quantum_computer_science.pdf</u> (2007).
- Somewhere in-between the two others: P. Kaye et al., An Introduction to Quantum Computing, <u>http://mmrc.amss.cas.cn/tlb/201702/W020170224608149125645.pdf</u> (2007).
- Video lecture by John Preskill (one of the entities in the field): <u>https://www.youtube.com/watch?v=w08pSFsAZvE&list=PL0ojjrEqlyPy-1RRD8cTD_IF1hflo89Iu</u>
- Lecture notes by Scott Aaronson (probably THE quantum computing blogger): <u>https://scottaaronson.blog/?p=3943</u>
- Video lecture by Michael Hartmann (more physics-focused than the others): <u>https://www.fau.tv/course/id/846</u>
- Overview of several concepts from QML (but not up to date anymore): M. Schuld and F. Pettrocione, Supervised Learning with Quantum Computers, <u>http://ndl.ethernet.edu.et/bitstream/123456789/73371/1/320.pdf</u> (2018).
- A closer look what might be possible with current-day hardware: J. Preskill, Quantum Computing in the NISQ era and beyond, <u>https://quantum-journal.org/papers/q-2018-08-06-79/</u> (2018).
- Same as previous, but bit more up to date: K. Bharti et al., Noisy intermediate-scale quantum algorithms, <u>https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.015004</u> (2022).
- Our survey ^(C): N. Meyer et al., **A Survey on Quantum Reinforcement Learning**, <u>https://arxiv.org/abs/2211.03464</u> (2022).

