
Reinforcement Learning

—

Lecture 9: Model-based RL (Discrete Actions)
Christopher Mutschler



Introduction to Model-Based Reinforcement Learning
Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample-efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

2



Introduction to Model-Based Reinforcement Learning
Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample-efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

3



Introduction to Model-Based Reinforcement Learning
Why Model-based RL?

“If the organism carries a ‘small-scale
model’ of external reality and of its own
possible actions within its head, it is able
to try out various alternatives, conclude
which is the best of them, react to future
situations before they arise, utilise the
knowledge of past events in dealing with
the present and future, and in every way
to react in a much fuller, safer, and more
competent manner to the emergencies
which face it.”

—Craik, 1943, The Nature of Explanation

4
Slide adapted from https://sites.google.com/view/mbrl-tutorial



Introduction to Model-Based Reinforcement Learning
Why Model-based RL?

5

Fazeli et al. (2019). See, feel, act: Hierarchical learning for 
complex manipulation skills with multisensory fusion. 

Science Robotics, 4(26).

Safety

Fisac et al. (2019). A General Safety Framework for 
Learning-Based Control in Uncertain Robotic 

Systems. IEEE Transactions on Automatic Control.

Robotic control

Sadigh et al. (2016). Planning for autonomous cars 
that leverage effects on human actions. RSS 2016.

HMI: H-AI-I

Games

Silver et al. (2016). Mastering the game of Go with deep 
neural networks and tree search. Nature, 529(7587), 484.

Science

Segler, Preuss, & Waller (2018). Planning 
chemical syntheses with deep neural networks 

and symbolic AI. Nature, 555(7698).

Operations Research

Salas & Powell (2013). Benchmarking a scalable 
approximate dynamic programming algorithm for stochastic 

control of multidimensional energy storage problems. 

[1]

1 Warren Powell’s 2017 ECSO tutorial, “A Unified Framework for Optimization under Uncertainty”



Introduction to Model-Based Reinforcement Learning
Model free vs. Model-based Reinforcement Learning

6

Model-free Model-based
Asymptotic Rewards + “depends”
Computation at deployment + - / +
Data efficiency - +
Speed to adapt to changing rewards - +
Speed to adapt to changing dynamics - +
Exploration - +



Introduction to Model-Based Reinforcement Learning
Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample-efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary Tasks

§ Real-world application

7



Introduction to Model-Based Reinforcement Learning
What is a model?

§ Quick recap: sequential decision making
§ Our goal:

   argmax
!

∑"#$% 𝛾"𝑅 𝑠", 𝑎" ,

subject to: 𝑎" = 𝜋 𝑠" 	, and
   𝑠"&' = 𝑇 𝑠", 𝑎"

§ We collect data 𝒟 = 𝑠", 𝑎", 𝑟"&', 𝑠"&' "#$
(

§ Model-free RL: learn policy directly from data
𝒟 → 𝜋, e.g., with Q-Learning, policy gradients, …

§ Model-based RL: learn model, then use it to learn or improve policy:
𝒟 → 𝑓 → 𝜋

8



Introduction to Model-Based Reinforcement Learning

Definition: A model is a representation that explicitly encodes knowledge about the structure of the environment and task.
But what knowledge to explicitly encode?

§ Transition/dynamics model: 𝑠"&' = 𝑓) 𝑠", 𝑎"

§ Reward model: 𝑟"&' = 𝑓*(𝑠", 𝑎")

§ Inverse dynamics model: 𝑎" = 𝑓)+' 𝑠", 𝑠"&'

§ Distance model: 𝑑,- = 𝑓. 𝑠,, 𝑠-

§ Future return model: 𝐺" = 𝑄 𝑠", 𝑎" or 𝐺" = 𝑉 𝑠"

9

* typically what MBRL is doing

What is a model?



What is a model?
Parametric vs. non-parametric representations

§ Parametric

§ Non-parametric

10

Neural Networks Physics-based

Gaussian Mixture 
Models Gaussian Processes Decision Trees or 

Random Forests



What is a model?
Model inputs: States

§ Dynamical system states (classical control theory)

11

https://de.mathworks.com/help/ident/ug/modeling-a-vehicle-dynamics-system.html
M. I.  Palmqvist et al.: Model predictive control for autonomous driving of a truck. KTH Royal Institute of Technology School of Electrical Engineering. 2016.



What is a model?
Model inputs: States

Pre-processed sensor data, e.g.
§ objects/bounding boxes extracted from images

12

https://de.wikipedia.org/wiki/Deep_Learning https://en.wikipedia.org/wiki/Long_short-term_memory 



What is a model?
Model inputs: Observations

Raw sensor data (e.g., images or LIDAR scans)
§ Note: not that common in real-world applications

13

Ebert, Finn, et al. (2018); Finn & Levine (2017); Finn, Goodfellow, & Levine (2016)
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Actions

5x5

48x64x16
48x64x3

24x32x32

3x3

12x16x64

3x3

6x8x128

3x3

48x64x2

Flow Field

Compositing
Masks

24x32x32

3x3

12x16x64

3x3

tile

skip

Transformation
6x8x5

3x3

48x64x2

Convolution+
Bilinear Upsampling

Conv-LSTM

3x3

Convolution+
Bilinear Downsampling

Figure 4: Forward pass through the recurrent SNA model. The
red arrow indicates where the image from the first time step
I0 is concatenated with the transformed images F̂t+1 t ⇧ Ît
multiplying each channel with a separate mask to produce the
predicted frame for step t+ 1.

that, as shown in figure 3, at the first time-step the real
image is transformed, whereas at later timesteps previously
generated images are transformed in order to generate
multi-frame predictions. The model is trained with gradient
descent on a `2 image reconstruction loss, denoted by L in
figure 3. A forward pass of the RNN is illustrated in figure
4. We use a series of stacked convolutional LSTMs and stan-
dard convolutional layers interleaved with average-pooling
and upsampling layers. The result of this computation is the
2 dimensional flow-field F̂t+1 t which is used to transform
a current image It or Ît. More details on the architecture are
provided in Appendix A.
Predicting pixel motion. When using visual MPC with a
cost-function based on start and goal pixel positions, we
require a model that can effectively predict the 2D mo-
tion of the user-selected start pixels d(1)0 , . . . , d(P )

0 up to T
steps into the future3. More details about the cost functions
are provided in section 5. Since the model we employ
is transformation-based, this motion prediction capability
emerges automatically, and therefore no external pixel mo-
tion supervision is required. To predict the future positions
of the designated pixel d, the same transformations used
to transform the images are applied to the distribution
over designated pixel locations. The warping transforma-
tion F̂t+1 t can be interpreted as a stochastic transition
operator allowing us to make probabilistic predictions about
future locations of individual pixels:

P̂t+1 = F̂t+1 t ⇧ P̂t (3)

Here, Pt is a distribution over image locations which has
the same spatial dimension as the image. For simplicity
in notation, we will use a single designated pixel moving
forward, but using multiple is straightforward. At the first
time step, the distribution P̂0 is defined as 1 at the position
of the user-selected designated pixel and zero elsewhere.
The distribution P̂t+1 is normalized at each prediction step.

Since this basic model, referred to as dynamic neural
advection (DNA), predicts images only based on the pre-
vious image, it is unable to recover shapes (e.g., objects)
after they have been occluded, for example by the robot

3. Note that when using a classifier-based cost function, we do not
require the model to output transformations.

arm. Hence, this model is only suitable for planning motions
where the user-selected pixels are not occluded during the
manipulation, limiting its use in cluttered environments
or with multiple selected pixels. In the next section, we
introduce an enhanced model, which lifts this limitation by
employing temporal skip connections.
Skip connection neural advection model. To enable ef-
fective tracking of objects through occlusions, we can add
temporal skip connections to the model: we now transform
pixels not only from the previously generated image Ît,
but from all previous images Î1, ...Ît, including the context
image I0, which is a real image. All these transformed
images can be combined to a form the predicted image
Ît+1 by taking a weighted sum over all transformed images,
where the weights are given by masks Mt with the same
size as the image and a single channel:

Ît+1 = M0(F̂t+1 0 ⇧ It) +
⌧X

j=1

Mj(F̂t+1 j ⇧ Îj). (4)

We refer to this model as the skip connection neural advection
model (SNA), since it handles occlusions by using temporal
skip connections such that when a pixel is occluded, e.g.,
by the robot arm or by another object, it can still reappear
later in the sequence. Transforming from all previous images
comes with increased computational cost, since the number
of masks and transformations scales with the number of
time-steps ⌧ . However, we found that in practice a greatly
simplified version of this model, where transformations are
applied only to the previous image and the first image of the
sequence I0, works equally well. Moreover we found that
transforming the first image of the sequence is not necessary,
as the model uses these pixels primarily to generate the
image background. Therefore, we can use the first image
directly, without transformation. More details can be found
in the appendix A and [7].

5 PLANNING COST FUNCTIONS

In this section, we discuss how to specify and evaluate goals
for planning. One naı̈ve approach is to use pixel-wise error,
such as `2 error, between a goal image and the predicted image.
However there is a severe issue with this approach: large
objects in the image, i.e. the arm and shadows, dominate
such a cost; therefore a common failure mode occurs when
the planner matches the arm position with its position in
the goal image, disregarding smaller objects. This failure
motivates our use of more sophisticated mechanisms for
specifying goals, which we discuss next.

5.1 Pixel Distance Cost
A convenient way to define a robot task is by choosing one
or more designated pixels in the robot’s camera view and
choosing a destination where each pixel should be moved.
For example, the user might select a pixel on an object and
ask the robot to move it 10 cm to the left. This type of
objective is general, in that it can define any object relocation
task on the viewing plane. Further, success can be measured
quantitatively, as detailed in section 9. Given a distribution
over pixel positions P0, our model predicts distributions
over its positions Pt at time t 2 {1, . . . , T}. One way of



What is a model?
Model inputs: Latent States

Extract useful features from the raw observations and use them as inputs to the model
§ Note: current practice

14

Lange et al.: Batch reinforcement learning. In Reinforcement learning (pp. 45-73). Springer, Berlin, Heidelberg. 2012.



What is a model?
Model inputs: Latent States

Extract useful features from the raw observations and use them as inputs to the model
§ Note: current practice

15

Kaiser et al.: Model-based reinforcement learning for atari. arXiv preprint arXiv:1903.00374. 2019.



What is a model?
Model inputs: Latent States

§ Extract useful features from the raw
observations and use them as inputs
to the model

§ Note: current practice

See also: https://worldmodels.github.io

16

Ha & Schmidhuber: World Models. NeurIPS 2018.

https://worldmodels.github.io/


What is a model?
Which model should we use?

Model desiderata
§ Learning sample efficiency

§ We would like to interact with the real system as little as possible
(e.g., due to time and safety constraints, hardware wear and tear, etc.) 

§ Multi-step accuracy
§ We require our model to be able to accurately predict several time-steps in the future (remember one-step rewards vs 

discounted return) 
§ Required engineering / domain knowledge

§ How easy it is to design a “simulator” for the real system using basic physics? How accurate such model would be? 
§ Does it make sense from economical perspective?

§ Prediction speed
§ Can we deploy in real-time systems (e.g., drones)?

17



What is a model?
Which model should we use?

Model desiderata

18

Name Features Speed of 
learning

Speed of 
predictions

Domain 
knowledge

Long-term 
accuracy

Dynamical system States Fast Fast High High

MLP States Med Fast Low Med

Observation Observations Slow Slow Low Low

State-space models Latent States Slow Fast Low Med

https://sites.google.com/view/mbrl-tutorial 



Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample-efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

19

Background Planning



Background Planning
Environment Data Augmentation

Dyna Architecture: Dyna-Q
§ Use collected data to learn a transition and reward model
§ Train a traditional RL algorithm (e.g., Q-Learning) using both environment data (real experience) and data generated from 

the learned model (simulated experience)

20

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

164 Chapter 8: Planning and Learning with Tabular Methods

n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Loop forever:

(a) S  current (nonterminal) state
(b) A "-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

(e) Model(S, A) R, S0 (assuming deterministic environment)
(f) Loop repeat n times:

S  random previously observed state
A random action previously taken in S
R, S0  Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was ↵ = 0.1, and the exploration parameter was " = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (↵ and ") were
optimized for it. The nonplanning agent took about 25 episodes to reach ("-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.



Background Planning
Environment Data Augmentation

Model-Based Policy Optimization
§ Use collected data to learn 𝑝/ 𝑠0, 𝑟|	𝑠, 𝑎 , i.e., a predictive model of the environment (transition model)
§ Apply traditional policy gradient methods on synthetic model rollouts
§ Take action in real environment

21

Algorithm 2 Model-Based Policy Optimization with Deep Reinforcement Learning
1: Initialize policy ⇡�, predictive model p✓, environment dataset Denv, model dataset Dmodel
2: for N epochs do
3: Train model p✓ on Denv via maximum likelihood
4: for E steps do
5: Take action in environment according to ⇡�; add to Denv
6: for M model rollouts do
7: Sample st uniformly from Denv
8: Perform k-step model rollout starting from st using policy ⇡�; add to Dmodel
9: for G gradient updates do

10: Update policy parameters on model data: � �� �⇡r̂�J⇡(�,Dmodel)

5 Model-based policy optimization with deep reinforcement learning

We now present a practical model-based reinforcement learning algorithm based on the derivation in
the previous section. Instantiating Algorithm 1 amounts to specifying three design decisions: (1) the
parametrization of the model p✓, (2) how the policy ⇡ is optimized given model samples, and (3) how
to query the model for samples for policy optimization.

Predictive model. In our work, we use a bootstrap ensemble of dynamics models {p1
✓
, ..., p

B

✓
}.

Each member of the ensemble is a probabilistic neural network whose outputs parametrize a Gaussian
distribution with diagonal covariance: pi

✓
(st+1, r|st, at) = N (µi

✓
(st, at),⌃i

✓
(st, at))). Individual

probabilistic models capture aleatoric uncertainty, or the noise in the outputs with respect to the
inputs. The bootstrapping procedure accounts for epistemic uncertainty, or uncertainty in the model
parameters, which is crucial in regions when data is scarce and the model can by exploited by policy
optimization. Chua et al. (2018) demonstrate that a proper handling of both of these uncertainties
allows for asymptotically competitive model-based learning. To generate a prediction from the
ensemble, we simply select a model uniformly at random, allowing for different transitions along a
single model rollout to be sampled from different dynamics models.

Policy optimization. We adopt soft-actor critic (SAC) (Haarnoja et al., 2018) as our pol-
icy optimization algorithm. SAC alternates between a policy evaluation step, which estimates
Q

⇡(s, a) = E⇡ [
P1

t=0 �
t
r(st, at)|s0 = s, a0 = a] using the Bellman backup operator, and a

policy improvement step, which trains an actor ⇡ by minimizing the expected KL-divergence
J⇡(�,D) = Est⇠D[DKL(⇡|| exp{Q⇡ � V

⇡})].

Model usage. Many recent model-based algorithms have focused on the setting in which model
rollouts begin from the initial state distribution (Kurutach et al., 2018; Clavera et al., 2018). While
this may be a more faithful interpretation of Algorithm 1, as it is optimizing a policy purely under
the state distribution of the model, this approach entangles the model rollout length with the task
horizon. Because compounding model errors make extended rollouts difficult, these works evaluate
on truncated versions of benchmarks. The branching strategy described in Section 4.2, in which
model rollouts begin from the state distribution of a different policy under the true environment
dynamics, effectively relieves this limitation. In practice, branching replaces few long rollouts from
the initial state distribution with many short rollouts starting from replay buffer states.

A practical implementation of MBPO is described in Algorithm 2.1 The primary differences from
the general formulation in Algorithm 1 are k-length rollouts from replay buffer states in the place of
optimization under the model’s state distribution and a fixed number of policy update steps in the
place of an intractable argmax. Even when the horizon length k is short, we can perform many such
short rollouts to yield a large set of model samples for policy optimization. This large set allows us to
take many more policy gradient steps per environment sample (between 20 and 40) than is typically
stable in model-free algorithms. A full listing of the hyperparameters included in Algorithm 2 for all
evaluation environments is given in Appendix C.

1When SAC is used as the policy optimization algorithm, we must also perform gradient updates on the
parameters of the Q-functions, but we omit these updates for clarity.

6

Janner et al.: When to Trust Your Model: Model-Based Policy Optimization. NeurIPS 2019.



Background Planning
Environment Data Augmentation

Domain Randomization & Sim2Real
§ If we have an available simulator (model),

we can train an RL agent there
§ But the simulation will always be different

compared to the real system
§ Solution: learn a good policy on a

“distribution of similar environments”,
differing in some physical parameters
(e.g., masses or image textures)

§ This way, the real system will be
“another variation” for the policy

§ Note: seems super-simple but 
works remarkably in practice!

22

Andrychowicz, OpenAI: Marcin, et al. "Learning dexterous in-hand manipulation." 
The International Journal of Robotics Research 39.1 (2020): 3-20.



Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample-efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

23

Background Planning



Background Planning
Sample-efficient Policy Learning

Idea: train model and policy jointly end-to-end
§ In other words: do what successfully worked in other domains

(such as computer vision, speech recognition, etc.)

§ Goal: maximize reward of parametric policy:

𝐽 𝜃 =>
"#$

%

𝛾"𝑅 𝑠", 𝑎" , with	𝑎" = 𝜋/ 𝑠" 	 and	 𝑠"&' = 𝑇 𝑠", 𝑎"

§ Just apply gradient ascent on policy gradient ∇/𝐽.

§ But how to calculate ∇/𝐽?
§ Remember REINFORCE

§ High-variance 
§ Requires stochastic policy

24



Background Planning
Sample-efficient Policy Learning

We can do more!
§ Smooth models offer derivatives:

𝑠"&' = 𝑓) 𝑠", 𝑎" 	 𝑟" = 𝑓* 𝑠", 𝑎"

∇)! 𝑠"&'	 , ∇1! 𝑠"&' , ∇)! 𝑟" , ∇1! 𝑟" , …

§ How do small changes in action affect the next state?

§ How do small changes in states affect the rewards?
§ …

à Allows end-to-end differentiation via backpropagation!

25



Background Planning
Policy Backprop

Back-propagate through the model to optimize the policy

Simple Algorithm:
1. Run a base policy 𝜋$ 𝑎"|𝑠" (e.g., a random policy) to collect data samples 𝒟 𝑠, 𝑎, 𝑠0 ,
2. Learn a dynamics model 𝑓/ 𝑠, 𝑎 by minimizing ∑, 𝑓/ 𝑠,, 𝑎, − 𝑠,0 2

3. Backpropagate through 𝑓/ 𝑠, 𝑎 into policy to optimize 𝜋/ 𝑎" 𝑠"

26

𝑓! 𝑠, 𝑎 𝑓! 𝑠, 𝑎 𝑓! 𝑠, 𝑎

𝑟(𝑠, 𝑎)

𝜋! 𝑠

𝑟(𝑠, 𝑎) 𝑟(𝑠, 𝑎)

𝜋! 𝑠 𝜋! 𝑠

Backprop:

max
!
,
"

𝛾"𝑅 𝑠" , 𝑎"

Remember: Distribution Mismatch!



Background Planning
Policy Backprop

Back-propagate through the model to optimize the policy

Better Algorithm:
1. Run a base policy 𝜋$ 𝑎"|𝑠" (e.g., a random policy) to collect data samples 𝒟 𝑠, 𝑎, 𝑠0 ,
2. Learn a dynamics model 𝑓/ 𝑠, 𝑎 by minimizing ∑, 𝑓/ 𝑠,, 𝑎, − 𝑠,0 2

3. Backpropagate through 𝑓/ 𝑠, 𝑎 into policy to optimize 𝜋/ 𝑎" 𝑠"
4. Run 𝜋/ 𝑎"|𝑠"
5. Append visited tuples 𝑠, 𝑎, 𝑠0 to 𝒟

27

𝑓! 𝑠, 𝑎 𝑓! 𝑠, 𝑎 𝑓! 𝑠, 𝑎

𝑟(𝑠, 𝑎)

𝜋! 𝑠

𝑟(𝑠, 𝑎) 𝑟(𝑠, 𝑎)

𝜋! 𝑠 𝜋! 𝑠

Backprop:

max
!
,
"

𝛾"𝑅 𝑠" , 𝑎"



Background Planning
Policy Backprop

Back-propagate through the model to optimize the policy
1. Approximate transitions and rewards with differentiable models
2. Calculate policy gradient via back-prop-through-time (BPTT)

§ Pros:
§ Long-term credit assignment
§ Differentiable transitions and rewards models à sample efficiency
§ Principles behind BPTT well understood
§ Deterministic & no variance involved

§ Cons:
§ Similar problems to training long RNNs with BPTT à poor conditioning

§ Vanishing and exploding gradients
§ Unlike LSTM, we cannot just “choose” simple dynamics as dynamics are chosen by nature.

§ Prone to local minima

28



Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

29

Online Planning



Online Planning
Background planning vs. Decision-Time planning

30

“Learn how to act for any situation” “Find best sequence of actions for my 
current situation”

s0
s0

s0

s0

s0

s0

Optimization variables: shared parameters	𝜃
(parameters of policy, or value, or …)

Optimization variables:  𝑎$, 𝑎', … , 𝑎3
(sequence of actions and/or states)

Background Planning Decision-Time Planning

https://sites.google.com/view/mbrl-tutorial 
Sutton and Barto: Reinforcement Learning: An Introduction.

e.g.:  𝐽 𝜃 = 𝔼#! ∑"$%
& 𝛾"𝑟" , 	 𝑎"= 𝜋!(𝑠") e.g.:  𝐽 𝑎%, … , 𝑎& = ∑"$%& 𝛾"𝑟"

Trained in expectation over all states Optimizes only on a particular action sequence



Online Planning
Background planning vs. Decision-Time planning

31

Background                                                       Decision-Time

joint angles? pixels? graphs?

Background Planning Decision-Time Planning
Act on most recent state of the world - +
Act without any learning - +
Competent in unfamiliar situations - +
Independent of observation space - +
Partial observability + + / -
Fast computation at deployment + -
Predictability and coherence + -
Same for discrete and continuous actions + -

https://sites.google.com/view/mbrl-tutorial 



Outline

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

32

Online Planning with Discrete Actions



Online Planning with Discrete Actions
Discrete Actions

Environments with discrete actions
§ Here we usually have problems with discrete actions and states (e.g., games, supply chains, production optimization, …)
§ Their dimensionality is so large that it is impossible to enumerate the solutions

33

https://deepmind.com/research/case-studies/alphago-the-story-so-far 



Online Planning with Discrete Actions
Monte Carlo Tree Search

§ In the heart of modern online planning methods lies Monte Carlo Tree Search (MTSC)
§ This is the work-horse behind Alpha Go and all its derivative work

34

Select

Expand

Simulate

Backup



Online Planning with Discrete Actions

1. Selection
§ How do we do selection in an MDP?

à We follow a policy 𝜋)

§ In nodes we have seen before, select action
according to UCT1 (UCB/Bandits):

𝑎 ∼ 𝑉, + 𝐶
45 6
7"
	

§ 𝑉, is value estimate at node 𝑖
§ 𝐶 is tunable exploration parameter
§ 𝑁 is number of visits of parent node
§ 𝑛, is number of visits at node 𝑖

§ We do this until we reach a leaf node
(where we don’t know what to do next)

35

Discrete Actions: Monte Carlo Tree Search

1 Upper Confidence bounds applied to Trees



Online Planning with Discrete Actions

1. Selection
2. Expansion

§ We know the (transition) model so we know where
actions lets us end up in (or we do a bunch of
one-step simulations to know successor states)

36

… … 

Discrete Actions: Monte Carlo Tree Search



Online Planning with Discrete Actions

1. Selection 
2. Expansion
3. Simulation

§ Randomly choose a new child node
§ Play randomly (i.e., with a random rollout policy 𝜋*)

until game finishes

37

Doing all these Monte-Carlo
rollouts gives us 6𝑄 𝑠, 𝑎 	

Discrete Actions: Monte Carlo Tree Search

T T
T

T
T

T

TT



Online Planning with Discrete Actions

1. Selection
2. Expansion
3. Simulation
4. Backup

§ We now have estimates of H𝑄 𝑠, 𝑎 of the leaf nodes
§ Backup Q-values and number of visits all the 

way up to the root of the tree

38

Discrete Actions: Monte Carlo Tree Search



Online Planning with Discrete Actions

1. Selection
2. Expansion
3. Simulation
4. Backup

§ We now have estimates of H𝑄 𝑠, 𝑎 of the leaf nodes
§ Backup Q-values and number of visits all the 

way up to the root of the tree

§ In fact, we now know a lot more about the tree!

We so far used two policies:
§ A selection policy 𝜋) (that uses Q-values where we already have knowledge about)
§ A random simulation policy 𝜋* (for leaves onwards where we don’t know anything)
§ We can update our selection policy 𝜋) now!
§ 𝜋) is getting deeper throughout the iterations of the algorithm and more accurate with backing up the information of 

leave nodes over time

39

Discrete Actions: Monte Carlo Tree Search



Online Planning with Discrete Actions
Discrete Actions: Monte Carlo Tree Search

§ Monte Carlo Tree Search is a planning algorithm, and we either
§ need a transition model, or we
§ need a way to do the simulation

§ But should we stop?
§ In principle, we could run MCTS forever
§ There is a bunch of ways how to integrate planning and executing:

1. Run MCTS until convergence starting from current real-world state
2. take best action in real world
3. go back to 1.

§ We could specify a maximal computation time per MCTS run
§ or: we solve the whole MDP and then run the tree greedily in real-world…

40



Online Planning with Discrete Actions
Discrete Actions: Monte Carlo Tree Search

§ One more thing about the rollout policy 𝝅𝒓:
§ We approximate Q-values under the assumption that we are greedy w.r.t. 𝜋) in knowledgeable states and that we 

behave randomly in simulation (à we underestimate Q!)
§ Encode goal/success conditions and fail-by-termination (i.e., constraints)

Example from Pac-Man: eating dots vs. avoiding ghosts

§ One more thing about UCT and the value range of Q:

§ General: Selection with UCT: 𝑎 = 	argmax9	 𝑉, + 𝐶
45 6
7"
	

§ In many cases: 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥,
:"
7"
+ 𝑐 45 6"

7"

41

Schrittwieser, Julian, et al. "Mastering atari, go, chess and shogi by planning with a learned model." Nature 588.7839 (2020): 604-609.

„winning“ ratio



Online Planning with Discrete Actions
MCTS in practice: AlphaGo & Derivatives

42

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules 



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

§ Large breadth and depth (𝑏 ≈ 250, 𝑑 ≈ 150)
§ Main idea: enhance MCTS with a learning component
§ RL Policy network: selects actions
§ RL Value network: predicts win/lose for each position

43

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

§ Large breadth and depth (𝑏 ≈ 250, 𝑑 ≈ 150)
§ Main idea: enhance MCTS with a learning component

44

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf

Stage 1:
Pre-training on expert data

Stage 2:
Policy gradient through self-play

Stage 3:
Value network regression

Stage 4:
Deploy within MCTS



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

§ Supervised Learning Policy network 𝑝;
§ Goal: predict good actions in states: maximize likelihood by SGD:

Δ𝜎 ∝
𝜕 log 𝑝;(𝑎|𝑠)

𝜕𝜎
§ Trained with state-action pairs from human experts (30M positions from KGS Go Server)
§ 13-layer neural networks with conv-layers and ReLUs
§ Accuracy of 57.0% (SotA was 44% at that time)
§ 4 weeks training time on 50 GPUs using Google Cloud1

45

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf

1 https://www.davidsilver.uk/wp-content/uploads/2020/03/AlphaGo-tutorial-slides_compressed.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions

§ Rollout policy network 𝑝!
§ same initialization and training but faster and less accurate
§ network only uses linear softmax of small (hand-crafted) input features
§ Accuracy of 24.2%
§ Forward pass only takes 2𝜇𝑠 (instead of 3ms for 𝑝;)

46

MCTS in practice: AlphaGo

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions

§ Reinforcement Learning of policy network 𝑝<: self-play with random ancestor of 𝑝<
§ Goal: maximize wins 𝑧" by policy gradient RL:

Δ𝜌 ∝
𝜕 log 𝑝< 𝑎" 𝑠"

𝜕𝜌
𝑧"

§ Reward is 0 everywhere and 𝑧 = ±1 at the end depending on outcome
§ This already yields a very strong player: wins 80% against 𝑝;, 85% against Piachi1

§ 1 week training time on 50 GPUs using Google Cloud1

47

initialized with

1 as of 2016 the strongest open-source Go program a sophisticated 
Monte Carlo search program, ranked at 2 amateur dan on KGS

MCTS in practice: AlphaGo

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf

1 https://www.davidsilver.uk/wp-content/uploads/2020/03/AlphaGo-tutorial-slides_compressed.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions

§ Reinforcement Learning of value network 𝑣/: predict outcome from position under 𝑝<
§ Goal: minimize MSE on state-outcome pairs 𝑠, 𝑧 and using SGD:

Δ𝜃 ∝
𝜕𝑣/ 𝑠
𝜕𝜃

𝑧 − 𝑣/(𝑠)

§ 30M games of self-play as input

§ Neural network architecture like that of 𝑝< but outputs single value

§ 1 week training time on 50 GPUs using Google Cloud

48

2 8  J A N U A R Y  2 0 1 6  |  V O L  5 2 9  |  N A T U R E  |  4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
i!

ca
tio

nC
lassi!cation

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n 
sq

ua
re

d 
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random 
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 !lters
192 !lters
256 !lters
384 !lters

A
lp

ha
G

o 
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

Accuracy of the position
evaluation of value function
vs. MC rolloutsMCTS in practice: AlphaGo

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

Deployment:
§ Policy: Online MCTS!!!

49

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf



Online Planning with Discrete Actions
MCTS in practice: AlphaGo

Deployment:
§ Policy: Online MCTS!!!
§ Run for a pre-defined

amount of time

§ Search Complexity

50

Exhaustive search

Reducing depth
with value network

Reducing breadth
with policy network



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

1. Selection
§ In nodes we have visited before, we select which action to take

based on the RL policy network action probabilities and the
Q-approximation in the tree nodes, in an UCB-like process1

§ Predictor + UCB applied to trees (PUCT) with policy network as predictor/prior:

a= = argmax>𝑄 𝑠", 𝑎 + 𝑐?@A" ⋅ 𝑝< 𝑠 |1 ⋅
∑#6(),E)
'&6(),>)

51

1 UCB = upper confidence bounds, a theoretical framework to tackle exploration (see lecture on exploration 
strategies). We will not further go into details here. Important here is only the fact that we not simply take the 
argmax-action but we add an exploration bonus on top that we calculate through a state-visitation counter.

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf

𝑐!"#$ = 5



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

1. Selection
2. Expansion

§ When we reach a leaf node, the SL Policy network is used 
to assign a prior action probability. The tree is expanded 
according to the most probable action of the RL Policy 
network

52

4 8 6  |  N A T U R E  |  V O L  5 2 9  |  2 8  J A N U A R Y  2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ∼…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
( )
+ ( )

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge

∑

∑

( )= ( )

( )=
( )

( ) ( )

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

1. Selection
2. Expansion
3. Simulation

§ After the expansion, multiple simulations in parallel are performed 
§ The “fast” rollout policy is used to play the game until it finishes.

53

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf



T
T

T
T

T

T

T
T

Online Planning with Discrete Actions
MCTS in practice: AlphaGo

4. Backup:
§ The value of the previous leaf node that was expanded is 

updated combining the RL value network and the final average 
reward (𝑧G) from the rollouts:

𝑉 𝑠H = 1 − 𝜆 𝑣/ 𝑠H + 𝜆𝑧G

§ The Q values and visitations of the tree nodes are updated 
as in the classical MCTS algorithm.

54

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
https://www.davidsilver.uk/wp-content/uploads/2020/03/unformatted_final_mastering_go.pdf

𝜆 = 0.5



Online Planning with Discrete Actions
MCTS in practice: AlphaGo & Derivatives

55

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules 



Online Planning with Discrete Actions
MCTS in practice: AlphaGo Zero

AlphaGo Zero
§ Main differences to AlphaGo:

1. No supervised initialization from human games
2. Only black & white stones (no hand-crafted features)
3. Joint RL Policy and Value network
4. No simulation rollouts during deployment – rely only on networks

§ Self-play against strongest version of the Policy/Value network
§ Use MCTS also in training:

§ Train the RL Policy head of the network to mimic 
the powerful MCTS policy during training

§ Train the RL Value head of the network to 
predict the outcome of the game 
(as in Alpha Go)

§ Think of it as trying to distill the power of 
MCTS search during training into the 
Policy/Value network

56

Silver, David, et al. "Mastering the game of go without human knowledge." nature 550.7676 (2017): 354-359.

T
T

T
T

T

T

T
T



Online Planning with Discrete Actions

57

ht
tp

s:
//m

ed
iu

m
.c

om
/a

pp
lie

d-
da

ta
-s

ci
en

ce
/a

lp
ha

go
-z

er
o-

ex
pl

ai
ne

d-
in

-o
ne

-d
ia

gr
am

-3
65

f5
ab

f6
7e

0



Online Planning with Discrete Actions
MCTS in practice: AlphaGo & Derivatives

58

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules 



Online Planning with Discrete Actions

§ The ”smallest” technical jump between versions
§ Main differences to AlphaGo Zero:

§ Expand AlphaGo Zero ideas to other games
§ RL Policy and Value networks in AlphaGo & AlphaGo Zero

exploited Go rules
§ Augmented data since Go board is invariant to 

rotation and translation
§ Go games can end with win or lose (no draw like chess). 

Training of AlphaGo (Zero) exploited this to estimate the 
probability of winning

§ Self-play is now against the current version of the 
networks and not against the strongest player so far.

§ See also “Alpha Zero and Monte Carlo Tree Search”:
https://www.youtube.com/watch?v=62nq4Zsn8vc

59

Silver, David, et al. "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362.6419 (2018): 1140-1144.

T
T

T
T

T

T

T
T

MCTS in practice: AlphaZero



Online Planning with Discrete Actions
MCTS in practice: AlphaGo & Derivatives

60

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules 



Online Planning with Discrete Actions
MCTS in practice: MuZero

§ Does not assume zero-sum games (win/lose) but 
general RL structure (rewards)

§ Policy is still MCTS, but uses learned model instead of game rules
§ Learns three components:

§ h: function that transforms observations to latent states
§ g: model that predicts next latent state and reward, based on 

current latent state and action
§ f: function that predicts current policy 

(from MCTS), and Value of latent state
§ All components are learned 

end-to-end using real game 
data stored in a replay buffer.

61

Schrittwieser, Julian, et al. "Mastering atari, go, chess and shogi by planning with a learned model." Nature 588.7839 (2020): 604-609.

T
T

T
T

T

T

T
T


