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Online Planning with Continuous Actions

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application
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Online Planning with Continuous Actions

§ Imagine this everyday situation….

min
𝐚!,…,𝐚"

log 𝑝 killed by Jason 𝐚$, … , 𝐚%)

max
𝐚!,…,𝐚"

∑&'$% 𝑟(𝐬&, 𝐚&) s.t. 𝑠&($ = 𝑓 𝐬&, 𝐚&

𝐚$, … , 𝐚% = arg max
𝐚!,…,𝐚"

𝐽 𝐚$, … , 𝐚% , 	 𝐀 = argmax
𝐀
𝐽(𝐀)

§ Simplest method: 1. pick 𝐀$, … , 𝐀* from some distribution (e.g., uniform) 

2. choose 𝐀+ based on argmax
+
𝐽 𝐀+
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𝑠! 𝑎!

don’t care what this is

The Objective



Random shooting:
1. Initialize 𝑎,, … , 𝑎- from guess

2. Expansion: execute actions 𝑎,, … , 𝑎- to
get states 𝑠$, … , 𝑠-

3. Evaluation: get trajectory reward 𝐽 a = ∑&',- 𝑟&

4. Back-propagation: get recursive gradients

Online Planning with Continuous Actions
Trajectory Optimization w/ Derivatives
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Remember: 
max
𝐚!,…,𝐚"

∑&'$% 𝑟(𝐬&, 𝐚&) s.t. 𝑠&($ = 𝑓 𝐬&, 𝐚&

This is:
max
𝐚!,…,𝐚"

𝑟 𝑠$, 𝑎$ + 𝑟 𝑓 𝑠$, 𝑎$ , 𝑎. +⋯+ 𝑟(𝑓 𝑓 … … , 𝑎&)

https://sites.google.com/view/mbrl-tutorial



Random shooting:
1. Initialize 𝑎,, … , 𝑎- from guess

2. Expansion: execute actions 𝑎,, … , 𝑎- to
get states 𝑠$, … , 𝑠-

3. Evaluation: get trajectory reward 𝐽 a = ∑&',- 𝑟&

4. Back-propagation: get recursive gradients

∇𝐚	𝐽 = =
&',

-

∇𝐚 𝑟&

	
∇𝐚𝑟& = ∇/𝑓0 𝑠&, 𝑎& ∇𝐚𝑠& + ∇𝐚𝑓0 𝑠&, 𝑎&
∇𝐚𝑠& = ∇𝐚𝑓/ 𝑠&1$, 𝑎&1$ + ∇/𝑓/ 𝑠&1$, 𝑎&1$ ∇𝐚𝑠&1$	
	
∇𝐚𝑠&1$'⋯
	

Online Planning with Continuous Actions
Trajectory Optimization w/ Derivatives
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reward model derivatives

transition model derivatives

computed recursively

Easily available via auto-diff!https://sites.google.com/view/mbrl-tutorial



Random shooting:
1. Initialize 𝑎,, … , 𝑎- from guess

2. Expansion: execute actions 𝑎,, … , 𝑎- to
get states 𝑠$, … , 𝑠-

3. Evaluation: get trajectory reward 𝐽 a = ∑&',- 𝑟&

4. Back-propagation: get recursive gradients

∇𝐚	𝐽 = =
&',

-

∇𝐚 𝑟&

	
∇𝐚𝑟& = ∇/𝑓0 𝑠&, 𝑎& ∇𝐚𝑠& + ∇𝐚𝑓0 𝑠&, 𝑎&
∇𝐚𝑠& = ∇𝐚𝑓/ 𝑠&1$, 𝑎&1$ + ∇/𝑓/ 𝑠&1$, 𝑎&1$ ∇𝐚𝑠&1$	
	
∇𝐚𝑠&1$'⋯

5. Update actions via gradient ascent and repeat 
steps 2-5

Online Planning with Continuous Actions
Trajectory Optimization w/ Derivatives
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Online Planning with Continuous Actions
Trajectory Optimization w/ Derivatives

Shooting methods vs. collocation
§ Shooting methods only optimize over actions:

max
𝐚!,…,𝐚"

𝑟 𝑠$, 𝑎$ + 𝑟 𝑓 𝑠$, 𝑎$ , 𝑎. +⋯+ 𝑟(𝑓 𝑓 … … , 𝑎&)

§ This leads to high sensitivity à poorly conditioned
§ small changes in early actions lead to large state changes downstream

§ Collocation: optimize for states and/or actions directly

           max
𝐚!,…,𝐚"

∑&'$% 𝑟(𝐬&, 𝐚&) s.t. 𝑠&($ = 𝑓 𝐬&, 𝐚&

   max
𝐬𝟏,𝐚!,…,𝐬",𝐚"

∑&'$% 𝑟(𝐬&, 𝐚&) s.t. 𝑠&($ − 𝑓 𝑠&, 𝑎& = 0
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Same issue as exploding/vanishing gradients in RNN training
(but cannot change transition function here)
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Online Planning with Continuous Actions

Shooting methods vs. collocation
§ Shooting methods only optimize over actions:

min
𝐚!,…,𝐚"

𝑟 𝑠$, 𝑎$ + 𝑟 𝑓 𝑠$, 𝑎$ , 𝑎. +⋯+ 𝑟(𝑓 𝑓 … … , 𝑎&)

§ This leads to high sensitivity à poorly conditioned
§ small changes in early actions lead to large state changes downstream

§ Collocation: optimize for states and/or actions directly
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Trajectory Optimization w/ Derivatives

Same issue as exploding/vanishing gradients in RNN training
(but cannot change transition function here)



Online Planning with Continuous Actions
Trajectory Optimization w/ Derivatives

Shooting methods vs. collocation
Summary:
§ Well-conditioned optimization problem

§ Changing 𝑠$𝑎$ becomes similar to changing 𝑠%𝑎%
§ Larger, but easier to optimize search space

§ good for contact-rich problems

9

Mordatch et al (2012). Discovery of Complex Behaviors through
Contact-Invariant Optimization.

Posa et al (2014). A Direct Method for Trajectory Optimization of
Rigid Bodies Through Contact.



Online Planning with Continuous Actions
Cross Entropy Maximization

à Simplest method: 1. pick 𝐀$, … , 𝐀* from some distribution (e.g., uniform) 

2. choose 𝐀+ based on argmax
+
𝐽 𝐀+

§ Was this really a good idea?  Can we do better?

§ Yes, we can! à Cross Entropy Maximization (CEM)
Conceptually:

1. Sample 𝐴$, … , 𝐴* from 𝑝(𝐴)
2. Evaluate 𝐽 𝐴$ , … , 𝐽 𝐴*
3. Pick best ones 𝐴+!, … , 𝐴+& with 𝑀 < 𝑁
4. Refit 𝑝(𝐴) around the best ones 

10



Online Planning with Continuous Actions

Sampling methods à Cross Entropy Maximization
§ Gradient-free
§ Population-based (like e.g., Genetic Algorithms), can escape local optima

11

https://sites.google.com/view/mbrl-tutorial 

Maintain optimal trajectory 
mean and covariance

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Online Planning with Continuous Actions

Sampling methods à Cross Entropy Maximization
§ Gradient-free
§ Population-based (like e.g., Genetic Algorithms), can escape local optima

12

Use Gaussian to sample around 
current parameter mean

https://sites.google.com/view/mbrl-tutorial 

Cross Entropy Maximization

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.



Online Planning with Continuous Actions

Sampling methods à Cross Entropy Maximization
§ Gradient-free
§ Population-based (like e.g., Genetic Algorithms), can escape local optima

13

Evaluate (using the model) the sampled  
parameters and keep the top K samples

https://sites.google.com/view/mbrl-tutorial 

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Online Planning with Continuous Actions

Sampling methods à Cross Entropy Maximization
§ Gradient-free
§ Population-based (like e.g., Genetic Algorithms), can escape local optima

14

Re-fit the sampling Gaussian 
using the top K samples

https://sites.google.com/view/mbrl-tutorial 

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Online Planning with Continuous Actions

Sampling methods à Cross Entropy Maximization
§ Gradient-free
§ Population-based (like e.g., Genetic Algorithms), can escape local optima
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Re-fit the sampling Gaussian 
using the top K samples

https://sites.google.com/view/mbrl-tutorial https://www.youtube.com/watch?v=tNAIHEse7Ms

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Online Planning with Continuous Actions

Sampling methods à Cross Entropy Maximization
§ Gradient-free
§ Population-based (like e.g., Genetic Algorithms), can escape local optima

§ Advantages
§ Super-simple to implement
§ Easy to parallelize

§ Limitations
§ Fails for high-dimensional 

action spaces
§ Gradient-free à increased 

sample complexity

16

https://sites.google.com/view/mbrl-tutorial 

Stulp et al (2012). Path Integral Policy Improvement with Covariance Matrix Adaptation.

Cross Entropy Maximization



Online Planning with Continuous Actions
Linear-Quadratic Regulator (LQR)

17

Approximate transitions with linear functions and rewards with quadratics: 

Becomes Linear-Quadratic Regulator (LQR) problem and can be solved exactly

Locally approximate the model around current solution, solve LQR problem to update 
solution, and repeat

Todorov and Li (2005). A generalized iterative LQG method.

https://sites.google.com/view/mbrl-tutorial 

Analytical methods à 2nd order optimization and iLQR
§ Iterative linearization of the dynamics
§ Explores gradient information à fast convergence
§ Very complicated method



Online Planning with Continuous Actions

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks
§ Real-world application

18
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Online Planning with Continuous Actions

Curiosity-based exploration
§ Use forward model prediction error as an intrinsic reward
§ Train policy to maximize intrinsic reward
§ Encourages the agent to revisit states that are novel or unexpected
§ Close to semi-supervised learning ideas
à See more in Lecture on Exploration Strategies

19

Jürgen Schmidhuber: Curious model-building control systems. IJCNN.1991.
Pathak et al.: Curiosity-driven exploration by self-supervised prediction. ICML. 2017.

Curiosity-driven Exploration by Self-supervised Prediction
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Figure 2. The agent in state st interacts with the environment by executing an action at sampled from its current policy ⇡ and ends up in
the state st+1. The policy ⇡ is trained to optimize the sum of the extrinsic reward (ret ) provided by the environment E and the curiosity
based intrinsic reward signal (rit) generated by our proposed Intrinsic Curiosity Module (ICM). ICM encodes the states st, st+1 into the
features �(st),�(st+1) that are trained to predict at (i.e. inverse dynamics model). The forward model takes as inputs �(st) and at

and predicts the feature representation �̂(st+1) of st+1. The prediction error in the feature space is used as the curiosity based intrinsic
reward signal. As there is no incentive for �(st) to encode any environmental features that can not influence or are not influenced by the
agent’s actions, the learned exploration strategy of our agent is robust to uncontrollable aspects of the environment.

We represent the policy ⇡(st; ✓P ) by a deep neural network
with parameters ✓P . Given the agent in state st, it executes
the action at ⇠ ⇡(st; ✓P ) sampled from the policy. ✓P is
optimized to maximize the expected sum of rewards,

max
✓P

E⇡(st;✓P )[⌃trt] (1)

Unless specified otherwise, we use the notation ⇡(s) to de-
note the parameterized policy ⇡(s; ✓P ). Our curiosity re-
ward model can potentially be used with a range of policy
learning methods; in the experiments discussed here, we
use the asynchronous advantage actor critic policy gradient
(A3C) (Mnih et al., 2016) for policy learning. Our main
contribution is in designing an intrinsic reward signal based
on prediction error of the agent’s knowledge about its en-
vironment that scales to high-dimensional continuous state
spaces like images, bypasses the hard problem of predict-
ing pixels and is unaffected by the unpredictable aspects of
the environment that do not affect the agent.

2.1. Prediction error as curiosity reward

Making predictions in the raw sensory space (e.g. when
st corresponds to images) is undesirable not only because
it is hard to predict pixels directly, but also because it is
unclear if predicting pixels is even the right objective to
optimize. To see why, consider using prediction error in
the pixel space as the curiosity reward. Imagine a scenario
where the agent is observing the movement of tree leaves
in a breeze. Since it is inherently hard to model breeze,
it is even harder to predict the pixel location of each leaf.

This implies that the pixel prediction error will remain high
and the agent will always remain curious about the leaves.
But the motion of the leaves is inconsequential to the agent
and therefore its continued curiosity about them is undesir-
able. The underlying problem is that the agent is unaware
that some parts of the state space simply cannot be mod-
eled and thus the agent can fall into an artificial curiosity
trap and stall its exploration. Novelty-seeking exploration
schemes that record the counts of visited states in a tabular
form (or their extensions to continuous state spaces) also
suffer from this issue. Measuring learning progress instead
of prediction error has been proposed in the past as one so-
lution (Schmidhuber, 1991). Unfortunately, there are cur-
rently no known computationally feasible mechanisms for
measuring learning progress.

If not the raw observation space, then what is the right fea-
ture space for making predictions so that the prediction
error provides a good measure of curiosity? To answer
this question, let us divide all sources that can modify the
agent’s observations into three cases: (1) things that can
be controlled by the agent; (2) things that the agent cannot
control but that can affect the agent (e.g. a vehicle driven
by another agent), and (3) things out of the agent’s control
and not affecting the agent (e.g. moving leaves). A good
feature space for curiosity should model (1) and (2) and be
unaffected by (3). This latter is because, if there is a source
of variation that is inconsequential for the agent, then the
agent has no incentive to know about it.

Auxiliary Tasks



Real-World Application: Uncertainty in Model-based RL

§ Motivation: why model-based RL?
§ What is a model? What are its inputs? What is a good model?
§ How can we use a model?

§ Background Planning
§ Environment data augmentation / simulation
§ Sample efficient policy learning

§ Online Planning
§ Discrete Actions
§ Continuous Actions

§ Auxiliary tasks

§ Real-world application

20
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Real-World Application: Uncertainty in Model-based RL

Problem: Model is never perfect
§ Aleatory/process uncertainty (risk): the process itself has noise
§ Epistemic/Model uncertainty: our model is not perfect

Solutions:
A. Act under imperfect models: use online re-planning (Model Predictive Control)
B. Estimate model uncertainty and use it for safe and efficient planning (MPC does not propagate uncertainty)
C. Combine A and B

21

Real-world application



Real-World Application: Uncertainty in Model-based RL

We will always have model errors
§ Aleatory/process uncertainty (risk): the process itself has noise
§ Epistemic/Model uncertainty: our model is not perfect

22

https://www.inovex.de/blog/uncertainty-quantification-deep-learning 

Model Uncertainty



Real-World Application: Uncertainty in Model-based RL

We will always have model errors
§ Aleatory/process uncertainty (risk): the process itself has noise
§ Epistemic/Model uncertainty: our model is not perfect
§ Model errors are additive: the prediction error will become larger as we try to predict further into the future

à Small errors propagate and compound 
§ Planner might even exploit such model errors!
§ Longer rollouts are less reliable

23

Janner et al (2019). When to Trust Your Model: Model-Based Policy Optimization.

Model Uncertainty



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Model Calibration
§ Big neural networks exhibit superior

predictive power
§ But are not well calibrated in practice!

§ Calibration affected by
§ depth & width of the network

(the bigger the more overconfident)
§ weight decay & batch normalization

§ Most calibration methods are post-hoc
methods
§ Such methods do not work in RL settings!

24

Chuan Guo et al.: On Calibration of Model Neural Networks. ICML. 2017.



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Recap: Background Planning with Policy Backpropagation
Better Algorithm:

1. Run a base policy 𝜋, 𝑎&|𝑠& (e.g., a random policy) to collect data samples 𝒟 𝑠, 𝑎, 𝑠4 +
2. Learn a dynamics model 𝑓5 𝑠, 𝑎 by minimizing ∑+ 𝑓5 𝑠+, 𝑎+ − 𝑠+4 .

3. Backpropagate through 𝑓5 𝑠, 𝑎 into policy to optimize 𝜋5 𝑎& 𝑠&
4. Run 𝜋5 𝑎&|𝑠&
5. Append visited tuples 𝑠, 𝑎, 𝑠4 to 𝒟

25

𝑓" 𝑠, 𝑎 𝑓" 𝑠, 𝑎 𝑓" 𝑠, 𝑎

𝑟(𝑠, 𝑎)

𝜋" 𝑠

𝑟(𝑠, 𝑎) 𝑟(𝑠, 𝑎)

𝜋" 𝑠 𝜋" 𝑠

Backprop:

max
"
,
!

𝛾!𝑟 𝑠! , 𝑎!

Remember: we make mistakes!



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Recap: Background Planning with Policy Backpropagation
Better Algorithm for online planning:

1. Run a base policy 𝜋, 𝑎&|𝑠& (e.g., a random policy) to collect data samples 𝒟 𝑠, 𝑎, 𝑠4 +
2. Learn a dynamics model 𝑓5 𝑠, 𝑎 by minimizing ∑+ 𝑓5 𝑠+, 𝑎+ − 𝑠+4 .

3. Plan through 𝑓5 𝑠, 𝑎 to choose actions 
4. Execute those actions
5. Append visited tuples 𝑠, 𝑎, 𝑠4 to 𝒟
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𝑓" 𝑠, 𝑎 𝑓" 𝑠, 𝑎 𝑓" 𝑠, 𝑎

𝑟(𝑠, 𝑎)

𝜋" 𝑠

𝑟(𝑠, 𝑎) 𝑟(𝑠, 𝑎)

𝜋" 𝑠 𝜋" 𝑠

Backprop:

max
"
,
!

𝛾!𝑟 𝑠! , 𝑎!

Remember: we make mistakes!



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

1. Run a base policy 𝜋, 𝑎&|𝑠& (e.g., a random policy) to collect data samples 𝒟 𝑠, 𝑎, 𝑠4 +
2. Learn a dynamics model 𝑓5 𝑠, 𝑎 by minimizing ∑+ 𝑓5 𝑠+, 𝑎+ − 𝑠+4 .

3. Plan until time horizon 𝐻 < 𝑇 using the model
4. Apply only first action of the plan
5. Append visited tuples 𝑠, 𝑎, 𝑠4 to 𝒟

27
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https://de.wikipedia.org/wiki/Model_Predictive_Control 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

28

Optimize 
trajectory

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

29

Apply first optimal 
action

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

30

Optimize 
trajectory

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

31

Apply first optimal 
action

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

32

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)
§ Errors don’t accumulate
§ Don’t need a perfect model, just one

pointing in the right direction

33

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)
§ Errors don’t accumulate
§ Don’t need a perfect model, just one

pointing in the right direction

This sounds expensive?
§ Reuse solution from previous step as

initial guess for next plan 

34

Example taken from https://sites.google.com/view/mbrl-tutorial 



Real-World Application: Uncertainty in Model-based RL
Model Uncertainty

Idea: don’t commit to a plan bullheadedly but re-plan online
Model Predictive Control (MPC)

35

Williams et al.: Information Theoretic MPC for Model-Based Reinforcement Learning. ICRA. 2017.



Real-World Application: Uncertainty in Model-based RL

Plan Conservatively: Model Uncertainty Propagation
§ Estimate/Quantify Model Uncertainty

§ Gaussian Processes
§ Monte Carlo Dropout
§ Probabilistic Neural Networks
§ Model Ensembles

§ Propagate for multiple steps in the future

36

Model Uncertainty



Real-World Application: Uncertainty in Model-based RL

Probabilistic Neural Networks
§ Capture Aleatoric/Process Uncertainty

§ Loss function for training
§ Negative log prediction probability
§ Assume: dataset 𝒟 with pairs of example data (𝑠+, 𝑎+), 𝑠+($

ℒ 𝑤 = −=
+'$

6

log K𝑓 𝑠+($ 𝑠+, 𝑎+; 𝑤)

ℒ789// 𝑤 = =
+'$

6

𝜇 𝑠+, 𝑎+ − 𝑠+($ Σ1$(𝑠+, 𝑎+) 𝜇 𝑠+, 𝑎+ − 𝑠+($ + log Σ(𝑠+, 𝑎+)

37

(𝑠! , 𝑎!)
𝜇!#$
𝜎!#$%

Uncertainty Estimation



Real-World Application: Uncertainty in Model-based RL
Uncertainty Estimation

38
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⋮
Training data for 
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Ensembles of Probabilistic Neural Networks
§ Capture Epistemic/model Uncertainty



Real-World Application: Uncertainty in Model-based RL

How do we propagate uncertainty to several future time-steps?

39
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Real-World Application: Uncertainty in Model-based RL

How do we propagate uncertainty to several future time-steps?
§ Moment Matching

40

𝑃(𝑠')

Sampling Sampling

𝑡 = 1 𝑡 = 2

𝑃(𝑠$) 𝑃(𝑠%)

Uncertainty Propagation



Real-World Application: Uncertainty in Model-based RL

How do we propagate uncertainty to several future time-steps?
§ Trajectory Sampling

41

𝑃(𝑠')

Sampling

𝑡 = 1 𝑡 = 2

Sampling

Sampling

Sampling

Uncertainty Propagation



Real-World Application: Uncertainty in Model-based RL
Uncertainty Estimation

42 Kurtland Chua et al.: Deep reinforcement learning in a handful of trials using probabilistic dynamics models. NIPS 2018.

Ensembles of Probabilistic Neural Networks
§ Capture Epistemic/model Uncertainty
§ Sample Trajectories
§ Plan via MPC



Real-World Application: Uncertainty in Model-based RL

Plan conservatively:
Closed-Loop control with Model Uncertainty Propagation
§ PILCO (probabilistic inference for learning control)

§ Background planning
§ Gaussian Processes as state-space model
§ Moment-matching for posterior (next state) distribution (uncertainty propagation)
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Figure 1. Small data set of observed transitions (left), multiple plausible deterministic function approximators (center),

probabilistic function approximator (right). The probabilistic approximator models uncertainty about the latent function.

A common approach in designing adaptive controllers,
which takes uncertainty of the model parameters
into account, is to add an extra term in the cost
function of a minimum-variance controller (Fabri &
Kadirkamanathan, 1998). Here, the uncertainty of the
model parameters is penalized to improve the model-
parameter estimation. Abbeel et al. (2006) proposed
further other successful heuristics to deal with inaccu-
rate models. Based on good-guess parametric dynam-
ics models, locally optimal controllers, and temporal
bias terms to account for model discrepancies, very im-
pressive results were obtained. Schneider (1997) and
Bagnell & Schneider (2001) proposed to account for
model bias by explicitly modeling and averaging over
model uncertainty. Pilco builds upon the success-
ful approach by Schneider (1997), where model un-
certainty is treated as temporally uncorrelated noise.
However, pilco neither requires sampling methods for
planning, nor is it restricted to a finite number of plau-
sible models.

Algorithms with GP dynamics models in RL were
presented by Rasmussen & Kuss (2004), Ko et al.
(2007), and Deisenroth et al. (2009). Shortcomings
of these approaches are that the dynamics models are
either learned by motor babbling, which is data ine�-
cient, or value function models have to be maintained,
which does not scale well to high dimensions. The
approaches by Engel et al. (2003) and Wilson et al.
(2010) are based GP value function models and, thus,
su↵er from the same problems. As an indirect pol-
icy search method, pilco does not require an explicit
value function model.

An extension of pilco to deal with planning and con-
trol under consideration of task-space constraints in a
robotic manipulation task is presented in (Deisenroth
et al., 2011).

Throughout this paper, we consider dynamic systems

xt = f(xt�1,ut�1) (1)

with continuous-valued states x 2 RD and controls
u 2 RF and unknown transition dynamics f . The

objective is to find a deterministic policy/controller ⇡ :
x 7! ⇡(x) = u that minimizes the expected return

J⇡(✓) =
XT

t=0
Ext [c(xt)] , x0 ⇠ N (µ0,⌃0) , (2)

of following ⇡ for T steps, where c(xt) is the cost (neg-
ative reward) of being in state x at time t. We assume
that ⇡ is a function parametrized by ✓ and that c en-
codes some information about a target state xtarget.

2. Model-based Indirect Policy Search

In the following, we detail the key components of the
pilco policy-search framework: the dynamics model,
analytic approximate policy evaluation, and gradient-
based policy improvement.

2.1. Dynamics Model Learning

Pilco’s probabilistic dynamics model is implemented
as a GP, where we use tuples (xt�1,ut�1) 2 RD+F

as training inputs and di↵erences �t = xt � xt�1 +
" 2 RD, " ⇠ N (0,⌃"), ⌃" = diag([�"1 , . . . ,�"D ]), as
training targets. The GP yields one-step predictions

p(xt|xt�1,ut�1) = N
�
xt |µt,⌃t

�
, (3)

µt = xt�1 + Ef [�t] , (4)

⌃t = varf [�t] . (5)

Throughout this paper, we consider a prior mean func-
tion m ⌘ 0 and the squared exponential (SE) kernel
k with automatic relevance determination. The SE
covariance function is defined as

k(x̃, x̃0) = ↵2 exp
�
� 1

2 (x̃� x̃0)>⇤�1(x̃� x̃0)
�

(6)

with x̃ := [x>u>]>. Here, we define ↵2 as the variance
of the latent function f and ⇤ := diag([`21, . . . , `

2
D]),

which depends on the characteristic length-scales `i.
Given n training inputs X̃ = [x̃1, . . . , x̃n] and corre-
sponding training targets y = [�1, . . . ,�n]>, the pos-
terior GP hyper-parameters (length-scales `i, signal
variance ↵2, noise variances ⌃") are learned by evi-
dence maximization (Rasmussen & Williams, 2006).
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The posterior predictive distribution p(�⇤|x̃⇤) for an
arbitrary, but known, test input x̃⇤ is Gaussian with
mean and variance

mf (x̃⇤) = Ef [�⇤] = k>
⇤ (K+ �2

"I)
�1y = k>

⇤ � , (7)

�2
f (�⇤) = varf [�⇤] = k⇤⇤ � k>

⇤ (K+ �2
"I)

�1k⇤ , (8)

respectively, where k⇤ := k(X̃, x̃⇤), k⇤⇤ := k(x̃⇤, x̃⇤),
� := (K + �2

"I)
�1y, and K being the Gram matrix

with entries Kij = k(x̃i, x̃j).

For multivariate targets, we train conditionally inde-
pendent GPs for each target dimension, i.e., the GPs
are independent for deterministically given test inputs.
For uncertain inputs, the target dimensions covary.

2.2. Policy Evaluation

Minimizing and evaluating J⇡ in Eq. (2) requires long-
term predictions of the state evolution. To obtain the
state distributions p(x1), . . . , p(xT ), we cascade one-
step predictions, see Eqs. (3)–(5). Doing this properly
requires mapping uncertain test inputs through the
GP dynamics model. In the following, we assume that
these test inputs are Gaussian distributed and extend
the results from Quiñonero-Candela et al. (2003) to the
multivariate case and the incorporation of controls.

For predicting xt from p(xt�1), we require a joint
distribution p(xt�1,ut�1). As the control ut�1 =
⇡(xt�1, ✓) is a function of the state, we compute the
desired joint as follows: First, we compute the mean
µu and the covariance ⌃u of the predictive control dis-
tribution p(ut�1) by integrating out the state. Subse-
quently, the cross-covariance cov[xt�1,ut�1] is com-
puted. Finally, we approximate the joint state-control
distribution p(x̃t�1) = p(xt�1,ut�1) by a Gaussian
with the correct mean and covariance. These compu-
tations depend on the parametrization of the policy ⇡.
For many interesting controller parametrizations, the
required computations can be performed analytically,
although often neither p(ut�1) nor p(xt�1,ut�1) are
exactly Gaussian (Deisenroth, 2010).

From now on, we assume a joint Gaussian distribution
p(x̃t�1) = N

�
x̃t�1 | µ̃t�1, ⌃̃t�1

�
at time t � 1. When

predicting the distribution

p(�t) =

Z
p(f(x̃t�1)|x̃t�1)p(x̃t�1) dx̃t�1 , (9)

we integrate out the random variable x̃t�1. Note that
the transition probability p(f(x̃t�1)|x̃t�1) is obtained
from the posterior GP distribution. Computing the
exact predictive distribution in Eq. (9) is analytically
intractable. Therefore, we approximate p(�t) by a
Gaussian using exact moment matching, see Fig. 2.
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Figure 2. GP prediction at an uncertain input. The input

distribution p(xt�1,ut�1) is assumed Gaussian (lower right

panel). When propagating it through the GP model (up-

per right panel), we obtain the shaded distribution p(�t),

upper left panel. We approximate p(�t) by a Gaussian

with the exact mean and variance (upper left panel).

For the time being, assume the mean µ� and the co-
variance ⌃� of the predictive distribution p(�t) are
known. Then, a Gaussian approximation to the de-
sired distribution p(xt) is given as N

�
xt |µt,⌃t

�
with

µt = µt�1 + µ� (10)

⌃t = ⌃t�1 +⌃� + cov[xt�1,�t] + cov[�t,xt�1] (11)

cov[xt�1,�t] = cov[xt�1,ut�1]⌃
�1
u cov[ut�1,�t] (12)

where the computation of the cross-covariances in
Eq. (12) depends on the policy parametrization, but
can often be computed analytically. The computation
of the cross-covariance cov[xt�1,�t] in Eq. (11) is de-
tailed by Deisenroth (2010).

In the following, we compute the mean µ� and the
variance ⌃� of the predictive distribution, see Eq. (9).

2.2.1. Mean Prediction

Following the law of iterated expectations, for target
dimensions a = 1, . . . , D, we obtain

µa
� = Ex̃t�1 [Ef [f(x̃t�1)|x̃t�1]] = Ex̃t�1 [mf (x̃t�1)]

=

Z
mf (x̃t�1)N

�
x̃t�1 | µ̃t�1, ⌃̃t�1

�
dx̃t�1 (13)

= �>
a qa (14)

with �a = (Ka + �2
"a)

�1ya and qa = [qa1 , . . . , qan ]
>.

With mf given in Eq. (7), the entries of qa 2 Rn are

qai =

Z
ka(x̃i, x̃t�1)N

�
x̃t�1 | µ̃t�1, ⌃̃t�1

�
dx̃t�1

= ↵2
ap

|⌃̃t�1⇤
�1
a +I|

exp
�
� 1

2⌫
>
i (⌃̃t�1 +⇤a)

�1⌫i
�
, (15)

⌫i := (x̃i � µ̃t�1) . (16)

Here, ⌫i in Eq. (16) is the di↵erence between the train-
ing input x̃i and the mean of the “test” input distri-
bution p(xt�1,ut�1).

Marc Deisenroth et al.: PILCO: A model-based and data-efficient approach to policy search. ICML. 2011.
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Plan conservatively:
Closed-Loop control with Model Uncertainty Propagation
§ PILCO (probabilistic inference for learning control)

§ Background planning
§ Gaussian Processes as state-space model
§ Moment-matching for posterior (next state) distribution (uncertainty propagation)
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Algorithm 1 pilco

1: init: Sample controller parameters ✓ ⇠ N (0, I).
Apply random control signals and record data.

2: repeat
3: Learn probabilistic (GP) dynamics model, see

Sec. 2.1, using all data.
4: Model-based policy search, see Sec. 2.2–2.3.
5: repeat
6: Approximate inference for policy evaluation,

see Sec. 2.2: get J⇡(✓), Eqs. (10)–(12), (24).
7: Gradient-based policy improvement, see

Sec. 2.3: get dJ⇡(✓)/ d✓, Eqs. (26)–(30).
8: Update parameters ✓ (e.g., CG or L-BFGS).
9: until convergence; return ✓⇤

10: Set ⇡⇤  ⇡(✓⇤).
11: Apply ⇡⇤ to system (single trial/episode) and

record data.
12: until task learned

individual partial derivatives in Eqs. (26)–(30) can
be computed analytically by repeated application of
the chain-rule to Eqs. (10)–(12), (14)–(16), (20)–(23),
and (26)–(30). We omit further lengthy details and
refer to (Deisenroth, 2010) for more information.

Analytic derivatives allow for standard gradient-based
non-convex optimization methods, e.g., CG or L-
BFGS, which return optimized policy parameters ✓⇤.
Analytic gradient computation of J⇡ is much more ef-
ficient than estimating policy gradients through sam-
pling: For the latter, the variance in the gradient
estimate grows quickly with the number of parame-
ters (Peters & Schaal, 2006).

3. Experimental Results

In this section, we report pilco’s success in e�ciently
learning challenging control tasks, including both stan-
dard benchmark problems and high-dimensional con-
trol problems. In all cases, pilco learns completely
from scratch by following the steps detailed in Alg. 1.
The results discussed in the following are typical,
i.e., they do neither represent best nor worst cases.
Videos and further information will be made avail-
able at http://mlg.eng.cam.ac.uk/carl/pilco and
at http://cs.uw.edu/homes/marc/pilco.

3.1. Cart-Pole Swing-up

Pilco was applied to learning to control a real cart-
pole system, see Fig. 3. The system consists of a cart
with mass 0.7 kg running on a track and a freely swing-
ing pendulum with mass 0.325 kg attached to the cart.
The state of the system is the position of the cart, the

velocity of the cart, the angle of the pendulum, and the
angular velocity. A horizontal force u 2 [�10, 10]N
could be applied to the cart. The objective was to
learn a controller to swing the pendulum up and to
balance it in the inverted position in the middle of
the track. A linear controller is not capable of do-
ing this (Raiko & Tornio, 2009). The learned state-
feedback controller was a nonlinear RBF network, i.e.,

⇡(x, ✓) =
Xn

i=1
wi�i(x) , (31)

�i(x) = exp(� 1
2 (x� µi)

>⇤�1(x� µi)) (32)

with n = 50 squared exponential basis functions cen-
tered at µi. In our experiment, ✓ = {wi,⇤, µi} 2 R305.

Pilco successfully learned a su�ciently good dy-
namics model and a good controller for this stan-
dard benchmark problem fully automatically in only
a handful of trials and a total experience of 17.5 s.
Snapshots of a 20 s test trajectory are shown in Fig. 3.

3.2. Cart-Double-Pendulum Swing-up

In the following, we show the results for pilco learning
a dynamics model and a controller for the cart-double-
pendulum swing-up. The cart-double pendulum sys-
tem consists of a cart (mass 0.5 kg) running on a track
and a freely swinging two-link pendulum (each link
of mass 0.5 kg) attached to it. The state of the sys-
tem is the position x1 and the velocity ẋ1 of the cart
and the angles ✓2, ✓3 and the angular velocities of both
attached pendulums. The control signals |u|  20N
were horizontal forces to the cart. Initially, the sys-
tem was expected to be in a state x0 at location x,
where both pendulums hung down. The objective was
to learn a policy ⇡⇤ to swing the double pendulum
up to the inverted position and to balance it with the
cart being at the expected start location x. A linear
controller is not capable of solving the this problem.

A standard control approach to solving the cart-double
pendulum task is to design two separate controllers,
one for the swing up and one linear controller for the
balancing task, see for instance (Zhong & Röck, 2001),
requiring prior knowledge about the task’s solution.
Unlike this engineered solution, pilco fully automat-
ically learned a dynamics model and a single nonlin-
ear RBF controller, see Eq. (31), with n = 200 and
✓ 2 R1816 to jointly solve the swing-up and balanc-
ing. For this, Pilco required about 20–30 trials cor-
responding to an interaction time of about 60 s–90 s.

3.3. Unicycle Riding

We applied pilco to riding a 5-DoF unicycle in a re-
alistic simulation of the one shown in Fig. 4(a). The
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Real-World Application: Uncertainty in Model-based RL

Plan conservatively:
Closed-Loop control with Model Uncertainty Propagation
§ PILCO (probabilistic inference for learning control)

§ Background planning
§ Gaussian Processes as state-space model
§ Moment-matching for posterior (next state) distribution (uncertainty propagation)

§ Advantages:
+ Unprecedent sample efficiency
+ Robust to small model errors

§ Shortcomings:
- GPs scale cubically with the number of training data samples
- Only specific classes of policies and reward functions are supported
- Assumes/requires problems with very smooth dynamics

47

Use Uncertainty information



Real-World Application: Uncertainty in Model-based RL

Plan conservatively:
Closed-Loop control with Model Uncertainty Propagation
§ Deep PILCO

§ Background planning
§ Bayesian neural network (MC Dropout/Ensemble as state-space model
§ Moment-matching for posterior (next state) distribution (uncertainty propagation)

§ Addresses all PILCO shortcomings
§ Advantages:

+ Scaling to large datasets + leveraging GPU processing
+ Very flexible policies
+ Robust to small model errors

§ Shortcomings:
- Still high execution times (e.g., for 40 learning

iterations in Cartpole PILCO needed
20.7 hours (!!!) and Deep PILCO (GPU) needed 
5.8 hours)
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Nitish Srivastava et al.: Dropout: a simple way to prevent neural networks from overfitting. JMLR. 2014.
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A. Nagabandi et al.: Deep dynamics models for learning dexterous manipulation. Conf. Robot Learning. 2020. 
https://bair.berkeley.edu/blog/2019/09/30/deep-dynamics/ 

Training progress on the ShadowHand hardware.
From left to right: 0-0.25 hours, 0.25-0.5 hours, 0.5-1.5 hours, ~2 hours. 

MPC (CEM-like) + Ensemble of Probabilistic Models
§ Online Planning (MPC)
§ Trajectory sampling for uncertainty propagation
§ Ensembles of probabilistic neural networks for modeling
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http://ai.berkeley.edu/lecture_slides.html

Sample efficiency benchmarks
§ Example Domain: MuJoCo HalfCheetah
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x1000 timesteps!

Gradient-free Methods (e.g., ARS)

Fully Online Methods (e.g., A3C)

Policy Gradient Methods (e.g., TRPO)

Value-based Off-Policy Methods (e.g., SAC)

Model-based Deep RL (e.g., PETS)

Model-based RL (e.g., PILCO)

𝑘 ⋅ 10!

𝑘 ⋅ 10"

𝑘/2 ⋅ 10#

𝑘/2 ⋅ 10$

𝑘 ⋅ 10$

FAIL!

Sample efficiency benchmarks
§ Example Domain: MuJoCo HalfCheetah
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