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Exploration in Deep RL
Key Exploration Problems in Deep RL

1. The “Hard-Exploration” Problem
§ Exploration in environments with very sparse or even deceptive rewards
§ Random exploration is prone to failure as it will rarely find successful

states or obtain meaningful feedback from the environment
§ Montezuma’s Revenge is one of such examples

2. The Noisy-TV Problem
§ Initially proposed by Burda et al.1: An agent seeks for novelty in the

environment and finds a TV with uncontrollable & unpredictable output
(e.g., Gaussian noise)
à this will attract the agent’s attention forever!

§ The agent obtains new rewards from the noisy TV consistently
but fails to make any meaningful progress and becomes
a “couch potato”
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1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.

Agent in maze with TV Agent in maze without TV

problems with sticky actions

Images taken from https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/



Exploration in Deep RL

§ But is it all so much different from what we studied with bandits?
§ Recap: classes of exploration methods:

§ Optimistic exploration:
§ A new state is always a good state
§ We must estimate the state visitation frequencies or novelty
§ Typically realized by means of exploration bonuses

§ Thompson sampling style algorithms:
§ Learn distribution over Q-functions or policies
§ Sample and act according to sample

§ Information gain style algorithms

§ We reason about information gain from visiting new states
§ Entropy-loss & Noise-based algorithms:

§ Implicit exploration through induction of noise
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We talked about this

Not our focus here
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Exploration in Deep RL

§ Let us revisit Upper Confidence Bounds:

𝑎!"#$ = argmax
%∈𝒜

𝑄 𝑎 + 𝑐 ⋅
2 log 𝑡
𝑁!(𝑎)

§ We can make use of several exploration bonus functions
(don’t worry about all the elements, most important is that it decreases with 𝑁 𝑎 !)

§ Open question: how can we make use of such methods in an MDP?
§ Idea: Count-based Exploration:

§ use 𝑁 𝑠, 𝑎 or 𝑁 𝑠 , and
§ add an exploration bonus!
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Exploration Bonus



Exploration in Deep RL
Intrinsic Rewards as Exploration Bonuses

§ Instead of 𝑟 𝑠, 𝑎 we provide 𝑟( 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + ℬ 𝑁 𝑠

§ We can give this to any model-free agent!
§ A general formulation looks like this:

𝑟! = 𝑟!) + 𝛽 ⋅ 𝑟!*	

§ 𝛽 is a hyperparameter that adjusts the balance between exploitation and exploration
§ 𝑟!) is called the extrinsic reward form the environment at time 𝑡
§ 𝑟!* is called the intrinsic reward, i.e., the exploration bonus at time 𝑡

§ The intrinsic reward is/can be inspired intrinsic motivation1 and we can transfer those findings to RL too:
1. Discovery of novel states
2. Improvement of the agent’s knowledge about the environment
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decreases with 𝑁 𝑠

1 Pierre-Yves Oudeyer and Frederic Kaplan: How can we define intrinsic motivation? 8th Intl. Conf. Epigenetic Robotics
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Exploration in Deep RL
Count-based Exploration

§ We want novel states to surprise the agent
à we need a metric that measures how novel a state appears to us

§ Intuitive idea: count how many times we see a particular state & apply the bonus accordingly
à Let 𝑁+(𝑠) be the empirical count of visits of a state 𝑠 in the sequence 𝑠,:+. 

§ But wait, as we deal with high-dimensional or continuous state spaces, we still have 2 problems:
1. Many states we will never see at all
2. Many states we will never see again
à So, what is a “count” after all?
à Counting will become somehow “useless”…

§ Side-note: we need a non-zero count for most states, even if we haven’t seen them before

§ But some states are more similar than others!
à This might be useful to exploit!
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Exploration in Deep RL
Count-based Exploration: Density Models

§ Idea: Density Models
1. Fit a density model 𝑝 𝑠; 𝜃 to approximate the frequency of visits
2. Derive a pseudo count from the model

§ Can we get 𝑝 𝑠; 𝜃 and 𝑝(𝑠; 𝜃.) to satisfy the above?
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𝑝 𝑠 =
𝑁(𝑠)
𝑛

true density at time step 𝑇: true density at time step 𝑇+1 after observing 𝑠:

𝑝! 𝑠 =
𝑁 𝑠 + 1
𝑛 + 1

Marc G. Bellemare et al.: Unifying Count-Based Exploration and Intrinsic Motivation. NIPS 2016.



Exploration in Deep RL
Count-based Exploration: Density Models

§ Idea: Density Models
1. Fit a density model 𝑝 𝑠; 𝜃 to approximate the frequency of visits
2. Derive a pseudo count from the model

§ Can we get 𝑝 𝑠; 𝜃 and 𝑝(𝑠; 𝜃.) to satisfy the above?
§ Sure:

1. Fit model 𝑝 𝑠; 𝜃 to all states 𝒟 seen so far
2. Take a step 𝑇 and observe 𝑠/
3. Fit new model 𝑝 𝑠; 𝜃. to 𝒟	 ∪ 𝑠/
4. Use 𝑝 𝑠; 𝜃 	and 𝑝 𝑠; 𝜃. to estimate ?𝑁(𝑠)

5. Set 𝑟*( = 𝑟* + ℬ ?𝑁 𝑠 	

6. Repeat.
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𝑝 𝑠; 𝜃 =
,𝑁(𝑠)
-𝑛

true density at time step 𝑇:

𝑝 𝑠; 𝜃! =
,𝑁 𝑠 + 1
-𝑛 + 1

true density at time step 𝑇+1 after observing 𝑠:

à solve linear system

à ,𝑁 𝑠 = -𝑛 ⋅ 𝑝(𝑠; 𝜃) à -𝑛 =
"# $ %&'( $;*#

( $;*#

but how? à ,𝑁 𝑠 = ( $;* &'( $;*#

( $;*# '( $;*

Marc G. Bellemare et al.: Unifying Count-Based Exploration and Intrinsic Motivation. NIPS 2016.



Exploration in Deep RL
Count-based Exploration: Density Models

§ Open issue #1: What bonus 𝓑 ?𝑵(𝒔) could we choose?

§ Upper Confidence Bounds: ℬ ?𝑁(𝑠) = 0 123 !
45(7)

§ MBIE-EB1,2: ℬ ?𝑁(𝑠) = ,
45(7)

§ BEB3: ℬ ?𝑁(𝑠) = ,
,(	 45 7

§ Open issue #2: What density model could we choose?
§ Note: we only need rough densities (no need for accuracy or normalization, and we do also not need to sample from it 

(such in GANs or VAEs!) – it only needs to get up for states that have higher density
§ Context Switching Trees (CTS)2,4

§ PixelCNN5,6

§ Gaussian Mixture Models (GMM)7

§ …
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1 Strehl & Littman: An analysis of model-based Interval Estimation for Markov Decision Processes. 2008.
2 Marc G. Bellemare et al.: Unifying Count-Based Exploration and Intrinsic Motivation. NIPS 2016.
3 Kolter & Ng: Near-Bayesian Exploration in Polynomial Time. ICML 2009.
4 Marc G. Bellemare et al.: Skip Context Tree Switching. ICML 2014.
5 Georg Ostrovski et al.: Count-Based Exploration with Neural Density Models. ICML 2017.
6 Arron van den Oord et al.: Conditional Image Generation with PixelCNN Decoders. NIPS 2016.
7 Zhao & Tresp: Curiosity-Driven Experience Prioritization via Density Estimation. NIPS Deep RL Workshop. 2018.



Average training score with and without exploration bonus or optimistic initialization in 5 Atari 2600 games. Shaded areas denote inter-quartile range, dotted lines show 
min/max scores

“Known world” of a DQN agent trained for 50 million frames with (right) and without (left) count-based exploration bonuses, in Montezuma‘s Revenge.
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Figure 2: Average training score with and without exploration bonus or optimistic initialization in 5
Atari 2600 games. Shaded areas denote inter-quartile range, dotted lines show min/max scores.

No bonus With bonus

Figure 3: “Known world” of a DQN agent trained for 50 million frames with (right) and without
(left) count-based exploration bonuses, in MONTEZUMA’S REVENGE.

count-based exploration bonus enables us to make quick progress on a number of games, most dra-
matically in MONTEZUMA’S REVENGE and VENTURE.

MONTEZUMA’S REVENGE is perhaps the hardest Atari 2600 game available through the ALE. The
game is infamous for its hostile, unforgiving environment: the agent must navigate a number of
different rooms, each filled with traps. Due to its sparse reward function, most published agents
achieve an average score close to zero and completely fail to explore most of the 24 rooms that
constitute the first level (Figure 3, top). By contrast, within 50 million frames our agent learns a
policy which consistently navigates through 15 rooms (Figure 3, bottom). Our agent also achieves a
score higher than anything previously reported, with one run consistently achieving 6600 points by
100 million frames (half the training samples used by Mnih et al. (2015)). We believe the success of
our method in this game is a strong indicator of the usefulness of pseudo-counts for exploration.1

6.2 Exploration for Actor-Critic Methods

We next used our exploration bonuses in conjunction with the A3C (Asynchronous Advantage
Actor-Critic) algorithm of Mnih et al. (2016). One appeal of actor-critic methods is their explicit
separation of policy and Q-function parameters, which leads to a richer behaviour space. This very
separation, however, often leads to deficient exploration: to produce any sensible results, the A3C
policy must be regularized with an entropy cost. We trained A3C on 60 Atari 2600 games, with and
without the exploration bonus (4). We refer to our augmented algorithm as A3C+. Full details and
additional results may be found in the appendix.

We found that A3C fails to learn in 15 games, in the sense that the agent does not achieve a score
50% better than random. In comparison, there are only 10 games for which A3C+ fails to improve on
the random agent; of these, 8 are games where DQN fails in the same sense. We normalized the two
algorithms’ scores so that 0 and 1 are respectively the minimum and maximum of the random agent’s
and A3C’s end-of-training score on a particular game. Figure 4 depicts the in-training median score
for A3C and A3C+, along with 1st and 3rd quartile intervals. Not only does A3C+ achieve slightly
superior median performance, but it also significantly outperforms A3C on at least a quarter of the
games. This is particularly important given the large proportion of Atari 2600 games for which an
✏-greedy policy is sufficient for exploration.

7 Related Work

Information-theoretic quantities have been repeatedly used to describe intrinsically motivated be-
haviour. Closely related to prediction gain is Schmidhuber (1991)’s notion of compression progress,

1A video of our agent playing is available at https://youtu.be/0yI2wJ6F8r0.

7

Marc G. Bellemare et al.: Unifying Count-Based Exploration and Intrinsic Motivation. NIPS 2016.
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Exploration in Deep RL
Counting after Hashing

§ Alternative idea:
§ Map high-dimensional states into a k-bit hash code via 𝜙(𝑠) and count 𝑁 𝜙(𝑠) instead of 𝑁(𝑠)
à Shorter codes = more hash collisions
à Similar states = similar hashes?

§ Locality-Sensitive Hashing (LSH)1

§ Hashing scheme that preserves the distancing information between data points
à close vectors obtain similar hashes, distant vectors have different hashes

§ SimHash2:

𝜙 𝑠 = sgn 𝐴𝑔(𝑠) ∈ −1,1 : , 	where
	

§ 𝐴 ∈ ℝ:	×< is a matrix with each entry drawn from 𝒩 0,1 , and
§ 𝑔: 	𝒮 → ℝ< is an optional preprocessing function

§ Larger 𝑘’s lead to higher granularity and fewer collisions.
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1 Haoran Tang et al.: Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. NIPS 2017.
2 Moses Charikar: Similarity Estimation Techniques from Rounding Algorithms. STOC 2002.



Exploration in Deep RL
Counting after Hashing

§ Alternative idea:
§ Map high-dimensional states into a k-bit hash code via 𝜙(𝑠) and count 𝑁 𝜙(𝑠) instead of 𝑁(𝑠)
à Shorter codes = more hash collisions
à Similar states = similar hashes?

§ Locality-Sensitive Hashing (LSH)1
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1 Haoran Tang et al.: Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. NIPS 2017.

Algorithm 1: Count-based exploration through static hashing, using SimHash
1 Define state preprocessor g : S ! RD

2 (In case of SimHash) Initialize A 2 Rk⇥D with entries drawn i.i.d. from the standard Gaussian
distribution N (0, 1)

3 Initialize a hash table with values n(·) ⌘ 0
4 for each iteration j do

5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy ⇡
6 Compute hash codes through any LSH method, e.g., for SimHash, �(sm) = sgn(Ag(sm))
7 Update the hash table counts 8m : 0  m M as n(�(sm)) n(�(sm)) + 1

8 Update the policy ⇡ using rewards
⇢
r(sm, am) + �p

n(�(sm))

�M

m=0

with any RL algorithm

Note that our approach is a departure from count-based exploration methods such as MBIE-EB
since we use a state-space count n(s) rather than a state-action count n(s, a). State-action counts
n(s, a) are investigated in the Supplementary Material, but no significant performance gains over
state counting could be witnessed. A possible reason is that the policy itself is sufficiently random to
try most actions at a novel state.

Clearly the performance of this method will strongly depend on the choice of hash function �. One
important choice we can make regards the granularity of the discretization: we would like for “distant”
states to be be counted separately while “similar” states are merged. If desired, we can incorporate
prior knowledge into the choice of �, if there would be a set of salient state features which are known
to be relevant. A short discussion on this matter is given in the Supplementary Material.

Algorithm 1 summarizes our method. The main idea is to use locality-sensitive hashing (LSH) to
convert continuous, high-dimensional data to discrete hash codes. LSH is a popular class of hash
functions for querying nearest neighbors based on certain similarity metrics [2]. A computationally
efficient type of LSH is SimHash [6], which measures similarity by angular distance. SimHash
retrieves a binary code of state s 2 S as

�(s) = sgn(Ag(s)) 2 {�1, 1}k, (2)

where g : S ! RD is an optional preprocessing function and A is a k ⇥D matrix with i.i.d. entries
drawn from a standard Gaussian distribution N (0, 1). The value for k controls the granularity: higher
values lead to fewer collisions and are thus more likely to distinguish states.

2.3 Count-Based Exploration via Learned Hashing

When the MDP states have a complex structure, as is the case with image observations, measuring
their similarity directly in pixel space fails to provide the semantic similarity measure one would desire.
Previous work in computer vision [7, 20, 36] introduce manually designed feature representations
of images that are suitable for semantic tasks including detection and classification. More recent
methods learn complex features directly from data by training convolutional neural networks [12,
17, 31]. Considering these results, it may be difficult for a method such as SimHash to cluster states
appropriately using only raw pixels.

Therefore, rather than using SimHash, we propose to use an autoencoder (AE) to learn meaningful
hash codes in one of its hidden layers as a more advanced LSH method. This AE takes as input
states s and contains one special dense layer comprised of D sigmoid functions. By rounding the
sigmoid activations b(s) of this layer to their closest binary number bb(s)e 2 {0, 1}D, any state s
can be binarized. This is illustrated in Figure 1 for a convolutional AE.

A problem with this architecture is that dissimilar inputs si, sj can map to identical hash codes
bb(si)e = bb(sj)e, but the AE still reconstructs them perfectly. For example, if b(si) and b(sj) have
values 0.6 and 0.7 at a particular dimension, the difference can be exploited by deconvolutional
layers in order to reconstruct si and sj perfectly, although that dimension rounds to the same binary
value. One can imagine replacing the bottleneck layer b(s) with the hash codes bb(s)e, but then
gradients cannot be back-propagated through the rounding function. A solution is proposed by Gregor
et al. [10] and Salakhutdinov & Hinton [28] is to inject uniform noise U(�a, a) into the sigmoid
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Exploration in Deep RL
Counting after Hashing

§ Alternative idea:
§ Map high-dimensional states into a k-bit hash code via 𝜙(𝑠) and count 𝑁 𝜙(𝑠) instead of 𝑁(𝑠)
à Shorter codes = more hash collisions
à Similar states = similar hashes?

§ Learning Hash-Codes1

§ SimHash works poorly on high-dimensional input with complex structure (such as images) as measuring the similarity on 
pixel-level fails to capture semantic similarity

§ Idea: learn a compression using an autoencoder
§ A special dense layer uses 𝑘 sigmoid functions in the latent space to generate a binary activation map
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Figure 1: The autoencoder (AE) architecture for ALE; the solid block represents the dense sigmoidal
binary code layer, after which noise U(�a, a) is injected.

Algorithm 2: Count-based exploration using learned hash codes
1 Define state preprocessor g : S ! {0, 1}D as the binary code resulting from the autoencoder

(AE)
2 Initialize A 2 Rk⇥D with entries drawn i.i.d. from the standard Gaussian distribution N (0, 1)
3 Initialize a hash table with values n(·) ⌘ 0
4 for each iteration j do

5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy ⇡

6 Add the state samples {sm}Mm=0 to a FIFO replay pool R
7 if j mod jupdate = 0 then

8 Update the AE loss function in Eq. (3) using samples drawn from the replay pool
{sn}Nn=1 ⇠ R, for example using stochastic gradient descent

9 Compute g(sm) = bb(sm)e, the D-dim rounded hash code for sm learned by the AE
10 Project g(sm) to a lower dimension k via SimHash as �(sm) = sgn(Ag(sm))
11 Update the hash table counts 8m : 0  m M as n(�(sm)) n(�(sm)) + 1

12 Update the policy ⇡ using rewards
⇢
r(sm, am) + �p

n(�(sm))

�M

m=0

with any RL algorithm

activations. By choosing uniform noise with a > 1
4 , the AE is only capable of (always) reconstructing

distinct state inputs si 6= sj , if it has learned to spread the sigmoid outputs sufficiently far apart,
|b(si)� b(sj)| > ✏, in order to counteract the injected noise.

As such, the loss function over a set of collected states {si}Ni=1 is defined as

L
�
{sn}Nn=1

�
= � 1

N

NX

n=1

h
log p(sn)� �

K

PD
i=1 min

n
(1� bi(sn))

2 , bi(sn)2
oi

, (3)

with p(sn) the AE output. This objective function consists of a negative log-likelihood term and a
term that pressures the binary code layer to take on binary values, scaled by � 2 R�0. The reasoning
behind this latter term is that it might happen that for particular states, a certain sigmoid unit is never
used. Therefore, its value might fluctuate around 1

2 , causing the corresponding bit in binary code
bb(s)e to flip over the agent lifetime. Adding this second loss term ensures that an unused bit takes
on an arbitrary binary value.

For Atari 2600 image inputs, since the pixel intensities are discrete values in the range [0, 255],
we make use of a pixel-wise softmax output layer [37] that shares weights between all pixels. The
architectural details are described in the Supplementary Material and are depicted in Figure 1. Because
the code dimension often needs to be large in order to correctly reconstruct the input, we apply a
downsampling procedure to the resulting binary code bb(s)e, which can be done through random
projection to a lower-dimensional space via SimHash as in Eq. (2).

On the one hand, it is important that the mapping from state to code needs to remain relatively
consistent over time, which is nontrivial as the AE is constantly updated according to the latest data
(Algorithm 2 line 8). A solution is to downsample the binary code to a very low dimension, or by
slowing down the training process. On the other hand, the code has to remain relatively unique
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1 Haoran Tang et al.: Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. NIPS 2017.



Exploration in Deep RL
Counting after Hashing

§ Alternative idea:
§ Map high-dimensional states into a k-bit hash code via 𝜙(𝑠) and count 𝑁 𝜙(𝑠) instead of 𝑁(𝑠)
à Shorter codes = more hash collisions
à Similar states = similar hashes?

§ Learning Hash-Codes1

§ SimHash works poorly on high-dimensional input with complex structure (such as images) as measuring the similarity on 
pixel-level fails to capture semantic similarity

§ Idea: learn a compression using an autoencoder
§ A special dense layer uses 𝑘 sigmoid functions in the latent space to generate a binary activation map
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Figure 1: The autoencoder (AE) architecture for ALE; the solid block represents the dense sigmoidal
binary code layer, after which noise U(�a, a) is injected.

Algorithm 2: Count-based exploration using learned hash codes
1 Define state preprocessor g : S ! {0, 1}D as the binary code resulting from the autoencoder

(AE)
2 Initialize A 2 Rk⇥D with entries drawn i.i.d. from the standard Gaussian distribution N (0, 1)
3 Initialize a hash table with values n(·) ⌘ 0
4 for each iteration j do

5 Collect a set of state-action samples {(sm, am)}Mm=0 with policy ⇡

6 Add the state samples {sm}Mm=0 to a FIFO replay pool R
7 if j mod jupdate = 0 then

8 Update the AE loss function in Eq. (3) using samples drawn from the replay pool
{sn}Nn=1 ⇠ R, for example using stochastic gradient descent

9 Compute g(sm) = bb(sm)e, the D-dim rounded hash code for sm learned by the AE
10 Project g(sm) to a lower dimension k via SimHash as �(sm) = sgn(Ag(sm))
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activations. By choosing uniform noise with a > 1
4 , the AE is only capable of (always) reconstructing

distinct state inputs si 6= sj , if it has learned to spread the sigmoid outputs sufficiently far apart,
|b(si)� b(sj)| > ✏, in order to counteract the injected noise.

As such, the loss function over a set of collected states {si}Ni=1 is defined as
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with p(sn) the AE output. This objective function consists of a negative log-likelihood term and a
term that pressures the binary code layer to take on binary values, scaled by � 2 R�0. The reasoning
behind this latter term is that it might happen that for particular states, a certain sigmoid unit is never
used. Therefore, its value might fluctuate around 1

2 , causing the corresponding bit in binary code
bb(s)e to flip over the agent lifetime. Adding this second loss term ensures that an unused bit takes
on an arbitrary binary value.

For Atari 2600 image inputs, since the pixel intensities are discrete values in the range [0, 255],
we make use of a pixel-wise softmax output layer [37] that shares weights between all pixels. The
architectural details are described in the Supplementary Material and are depicted in Figure 1. Because
the code dimension often needs to be large in order to correctly reconstruct the input, we apply a
downsampling procedure to the resulting binary code bb(s)e, which can be done through random
projection to a lower-dimensional space via SimHash as in Eq. (2).

On the one hand, it is important that the mapping from state to code needs to remain relatively
consistent over time, which is nontrivial as the AE is constantly updated according to the latest data
(Algorithm 2 line 8). A solution is to downsample the binary code to a very low dimension, or by
slowing down the training process. On the other hand, the code has to remain relatively unique

4

reconstruction
loss 

Sigmoid activation
being closer to binary

1 Haoran Tang et al.: Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. NIPS 2017.
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Exploration in Deep RL
Prediction-based Exploration

§ So far, we derived the bonus with respect to the novelty of states we encounter
§ The bonus correlates with the state visitation
§ We encourage the agent to look for states it did not see that often

§ However, we also could interpret intrinsic motivation more widely in terms of curiosity
§ Obtaining knowledge about the environment
§ Familiarity with the environment dynamics, reward structure, …

§ In RL, the idea of using a prediction model actually dates back to 19911
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1 Jürgen Schmidhuber: A Possibility for Implementing Curiosity and Boredom in Model-Builing Neural Controllers. Intl. Conf. Simulation of Adaptive Behavior. 1991.



Prediction-based Exploration
Predicting Models: Forward Dynamics

§ Idea of the forward dynamics prediction model:

§ The agent learns a parameterized function 𝑓= such that:

𝑓=: 𝑠!, 𝑎! → 𝑠!(,

§ Derive a reward bonus based on the prediction error of the dynamics model

𝑒 𝑠!, 𝑎! = 𝑓 𝑠!, 𝑎! − 𝑠!(, 0
0

§ Large prediction error: high bonus (as we encountered something unusual/unknown)
§ Low prediction error: low bonus (as we have seen this coming)

§ Our agent uses all the experience samples 𝑠!, 𝑎!, 𝑠!(, collected so far and retrains its prediction model as it interacts 
with the environment
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Prediction-based Exploration
Predicting Models: Forward Dynamics

Intelligent Adaptive Curiosity (IAC)1

§ A memory 𝑀 stores all the experiences encounted so far: 𝑀 = 𝑠!, 𝑎!, 𝑠!(,
§ Idea:

§ IAC (incrementally) splits the sensorimotor space into regions ℛ>…+
(criterion: the sum of variances of the two sets weighted by #samples is minimal)

§ Each region ℛ+ has an associated expert (forward dynamics model)
that is trained using the data from its region

§ Learning:
§ With each new action the prediction error of the forward

dynamics model is calculated using the MSE and put in
a sliding window associated to that region

§ The decrease in the mean error rate is given as a reward
to the agent

20

1 Pierre-Yves Oudeyer et al.: Intrinsic Motivation Systems for Autonomous Mental Development. Trans. Evol. Computation. 11(2). 2007.

forward dynamics model

Forward dynamics model error predictor
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Predicting Forward Dynamics

Deep Predictive Models1

§ Predicting high-dimensional state spaces (images) can become very difficult
§ Train a forward dynamics model in an encoding space 𝜙 (train an autoencoder):

𝑓@: 𝜙 𝑠! , 𝑎! → 𝜙 𝑠!(,

§ Normalize the prediction error at time 𝑇 by the maximum error so far:

�̅�! =
𝑒!

max
*A!

𝑒*

§ Define the extrinsic reward accordingly (𝐶 is a decay parameter):

𝑟!* =
𝑒! 𝑠!, 𝑎!
𝑡 ⋅ 𝐶

§ The autoencoder can be trained upfront using images collected randomly or trained along with the policy and being 
updated steadily.
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1 Stadie, Levine, Abbeel: Incentivizing Exploration in Reinforcement Learning with Deep Predictive Models. 2015.
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Predicting Forward Dynamics

Intrinsic Curiosity Module (ICM)1

§ Instead of an autoencoder ICM trains the state space
encoding 𝜙(𝑠!) with a self-supervised inverse dynamics model

§ Motivation:
§ Predicting 𝑠!(, given 𝑠!, 𝑎! is not always easy as many factors in

the environment cannot be controlled/affected by the agent
§ Popular example: imagine this tree with leaves
§ Such factors should not be part of the encoded state space as

the agent should not base its decision based on these factors

§ Solution: Learn an inverse dynamics model 𝑔:

𝑔: 𝜙 𝑠! , 𝜙 𝑠!(, → 𝑎!

§ The feature space then only captures those changes in the environment related to actions that the agent takes, and ignores 
the rest

22

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.

learn to explore in Level-1 explore faster in Level-2



Prediction-based Exploration

Intrinsic Curiosity Module (ICM)1, given
§ a forward model 𝑓 with parameters 𝜃B
§ an inverse dynamics model 𝑔 with parameters 𝜃C
§ and an observation 𝑠!, 𝑎!, 𝑠!(,

§ The policy is jointly optimized as a whole:

min
=!,=",=#

−𝜆𝔼E 7$;=! ∑! 𝑟! + 1 − 𝛽 𝐿C + 𝛽𝐿B
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Curiosity-driven Exploration by Self-supervised Prediction
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Figure 2. The agent in state st interacts with the environment by executing an action at sampled from its current policy ⇡ and ends up in
the state st+1. The policy ⇡ is trained to optimize the sum of the extrinsic reward (ret ) provided by the environment E and the curiosity
based intrinsic reward signal (rit) generated by our proposed Intrinsic Curiosity Module (ICM). ICM encodes the states st, st+1 into the
features �(st),�(st+1) that are trained to predict at (i.e. inverse dynamics model). The forward model takes as inputs �(st) and at

and predicts the feature representation �̂(st+1) of st+1. The prediction error in the feature space is used as the curiosity based intrinsic
reward signal. As there is no incentive for �(st) to encode any environmental features that can not influence or are not influenced by the
agent’s actions, the learned exploration strategy of our agent is robust to uncontrollable aspects of the environment.

We represent the policy ⇡(st; ✓P ) by a deep neural network
with parameters ✓P . Given the agent in state st, it executes
the action at ⇠ ⇡(st; ✓P ) sampled from the policy. ✓P is
optimized to maximize the expected sum of rewards,

max
✓P

E⇡(st;✓P )[⌃trt] (1)

Unless specified otherwise, we use the notation ⇡(s) to de-
note the parameterized policy ⇡(s; ✓P ). Our curiosity re-
ward model can potentially be used with a range of policy
learning methods; in the experiments discussed here, we
use the asynchronous advantage actor critic policy gradient
(A3C) (Mnih et al., 2016) for policy learning. Our main
contribution is in designing an intrinsic reward signal based
on prediction error of the agent’s knowledge about its en-
vironment that scales to high-dimensional continuous state
spaces like images, bypasses the hard problem of predict-
ing pixels and is unaffected by the unpredictable aspects of
the environment that do not affect the agent.

2.1. Prediction error as curiosity reward

Making predictions in the raw sensory space (e.g. when
st corresponds to images) is undesirable not only because
it is hard to predict pixels directly, but also because it is
unclear if predicting pixels is even the right objective to
optimize. To see why, consider using prediction error in
the pixel space as the curiosity reward. Imagine a scenario
where the agent is observing the movement of tree leaves
in a breeze. Since it is inherently hard to model breeze,
it is even harder to predict the pixel location of each leaf.

This implies that the pixel prediction error will remain high
and the agent will always remain curious about the leaves.
But the motion of the leaves is inconsequential to the agent
and therefore its continued curiosity about them is undesir-
able. The underlying problem is that the agent is unaware
that some parts of the state space simply cannot be mod-
eled and thus the agent can fall into an artificial curiosity
trap and stall its exploration. Novelty-seeking exploration
schemes that record the counts of visited states in a tabular
form (or their extensions to continuous state spaces) also
suffer from this issue. Measuring learning progress instead
of prediction error has been proposed in the past as one so-
lution (Schmidhuber, 1991). Unfortunately, there are cur-
rently no known computationally feasible mechanisms for
measuring learning progress.

If not the raw observation space, then what is the right fea-
ture space for making predictions so that the prediction
error provides a good measure of curiosity? To answer
this question, let us divide all sources that can modify the
agent’s observations into three cases: (1) things that can
be controlled by the agent; (2) things that the agent cannot
control but that can affect the agent (e.g. a vehicle driven
by another agent), and (3) things out of the agent’s control
and not affecting the agent (e.g. moving leaves). A good
feature space for curiosity should model (1) and (2) and be
unaffected by (3). This latter is because, if there is a source
of variation that is inconsequential for the agent, then the
agent has no incentive to know about it.

#𝑎% = 𝑔 𝜙(𝑠%), 𝜙(𝑠%&'); 𝜃(

-𝜙 𝑠%&' = 𝑓 𝜙 𝑠% , 𝑎%; 𝜃)

𝑟%* =
𝜂
2

-𝜙 𝑠%&' − 𝜙(𝑠%&')
+

+
	

𝐿! 𝜙 𝑠" , 0𝜙 𝑠"#$ =
1
2

0𝜙 𝑠"#$ − 𝜙(𝑠"#$)
%

%

	policy gradient loss

if actions are discrete: softmax ML
under multinomial distribution

Predicting Forward Dynamics

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.
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Intrinsic Curiosity Module (ICM)1: Large-Scale Study
§ Analyze the influence of curiosity by purely using the intrinsic reward:

𝑟! = 𝑟!* = 𝑓 𝑠!, 𝑎! − 𝜙 𝑠!(, 0
0

§ What requirements must 𝜙 satisfy? When does it work best?

24

1 Yuri Burda et al.: Large-Scale Study of Curiosity-Driven Learning. ICLR 2019.

compact, sufficient, stable

VAE IDF RF Pixels
stable ✘ ✘ ✓ ?
compact ✓ ✓ ? ✘

sufficient ✓ ? ? ✓

Details on experiments:
• Robust learning: PPO
• Reward, Advantage, Observation Normalization
• 128 parallel actors
• Feature normalization
• Infinite horizon (avoid done flag)

à Random CNN features are simple yet surprisingly strong!
à However, IDF generalizes better (transfer knowledge from

Super Mario Bros. Level 1 à Level 2)

Predicting Forward Dynamics
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Predicting Forward Dynamics

Intrinsic Curiosity Module (ICM)1: Noisy TV
§ Noisy TV drastically slows down the learning as extrinsic rewards are considerably lower in time

à stochasticity of the environment poses problems
§ Stochasticity is not always a problem, sometimes the agent escapes

25

5 Discussion

We have shown that our agents trained purely with a curiosity reward are able to learn useful
behaviours: (a) Agent being able to play many atari games without using any rewards. (b) Mario
being able to cross over over 11 levels without reward. (c) Walking like behavior emerged in the Ant
environment. (d) Juggling like behavior in Robo-school environment (e) Rally-making behavior in
Two-player Pong with curiosity-driven agent on both sides. But this is not always true as there are
some Atari games where exploring the environment does not correspond to extrinsic reward.

More generally, these results suggest that, in environments designed by humans, the extrinsic reward
is perhaps often aligned with the objective of seeking novelty. The game designers set up curriculums
to guide users while playing the game explaining the reason Curiosity-like objective decently aligns
with the extrinsic reward in many human-designed games [6, 12, 16, 48].

Limitation of prediction error based curiosity: A more serious potential limitation is the handling
of stochastic dynamics. If the transitions in the environment are random, then even with a perfect
dynamics model, the expected reward will be the entropy of the transition, and the agent will seek out
transitions with the highest entropy. Even if the environment is not truly random, unpredictability
caused by a poor learning algorithm, an impoverished model class or partial observability can lead
to exactly the same problem. We did not observe this effect in our experiments on games so we
designed an environment to illustrate the point.

Figure 6: We add a noisy TV to the unity environ-
ment in Section 3.3. We compare IDF and RF with
and without the TV.

We return to the maze of Section 3.3 to empir-
ically validate a common thought experiment
called the noisy-TV problem. The idea is that
local sources of entropy in an environment like
a TV that randomly changes channels when
an action is taken should prove to be an irre-
sistible attraction to our agent. We take this
thought experiment literally and add a TV to
the maze along with an action to change the
channel. In Figure 6 we show how adding the
noisy-TV affects the performance of IDF and
RF. As expected the presence of the TV dras-
tically slows down learning, but we note that
if you run the experiment for long enough the
agents do sometimes converge to getting the
extrinsic reward consistently. We have shown
empirically that stochasticity can be a prob-
lem, and so it is important for future work to
address this issue in an efficient manner.

Future Work: We have presented a simple and scalable approach that can learn nontrivial behaviors
across a diverse range of environments without any reward function or end-of-episode signal. One
surprising finding of this paper is that random features perform quite, but learned features appear to
generalize better. Whilst we believe that learning features will become important once the environment
is complex enough, we leave that up to future work to explore.

Our wider goal, however, is to show that we can take advantage of many unlabeled (i.e., not
having an engineered reward function) environments to improve performance on a task of
interest. Given this goal, showing performance in environments with a generic reward function
is just the first step, and future work could investigate transfer from unlabeled to labeled environments.
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Variational Information Maximizing Exploration (VIME)1:
§ Some useful theoretic quantities first2:

§ 𝑝(𝑥): distribution (e.g., over observations 𝑥) 

§ ℋ 𝑝 𝑥 = −𝔼G~I(G) log 𝑝(𝑥) : entropy (how broad is 𝑝(𝑥)) 

§ 𝜋 𝑠 : state marginal distribution of policy 𝜋
§ ℋ 𝜋(𝑠) : state marginal entropy of policy 𝜋 (quantifies coverage)
§ ℐ 𝑠!(,; 𝑎! = ℋ 𝑠!(, −ℋ 𝑠!(,|𝑎! : mutual information (empowerment)

§ Idea of VINE:
§ Given: environment transition function 𝒫 and forward prediction model 𝑝 𝑠!(,|𝑠!, 𝑎!; 𝜃 , 𝜃 ∈ Θ
§ We see a trajectory 𝜉! = 𝑠,, 𝑎,, … 𝑠!
§ We want to reduce entropy whenever we acquire new knowledge (see new states), i.e., maximize:

i
!

𝐻 Θ|𝜉!, 𝑎! − 𝐻 Θ|𝑠!(,, 𝜉!, 𝑎! = ⋯ =	𝔼7$89~𝒫 ⋅|M$,%$ 𝐷NO 𝑝 𝜃|𝜉!, 𝑎!, 𝑠!(, ‖𝑝 𝜃|𝜉!
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Variational Information Maximizing Exploration (VIME)1:
§ Unfortunately, computing the posterior 𝑝 𝜃|𝜉!, 𝑎!, 𝑠!(, is intractable:

𝑝 𝜃|𝜉!, 𝑎!, 𝑠!(, =
𝑝 𝜃|𝜉!, 𝑎! 𝑝 𝑠!(,|𝜉!, 𝑎!; 𝜃

𝑝 𝑠!(,|𝜉!, 𝑎!

𝑝 𝜃|𝜉!, 𝑎!, 𝑠!(, =
𝑝 𝜃|𝜉! 𝑝 𝑠!(,|𝜉!, 𝑎!; 𝜃

𝑝 𝑠!(,|𝜉!, 𝑎!
𝑝 𝜃|𝜉!, 𝑎!, 𝑠!(, =

𝑝 𝜃|𝜉! 𝑝 𝑠!(,|𝜉!, 𝑎!; 𝜃

∫P 𝑝 𝑠!(,|𝜉!, 𝑎!; 𝜃 𝑝 𝜃|𝜉! 𝑑𝜃

§ As it is difficult to compute 𝑝 𝜃|𝜉! , we approximate it with an alternative distribution 𝑞@ 𝜃

§ Variational Inference: using the variational lower bound: maximizing 𝑞@(𝜃) is equivalent to 

§ Maximizing 𝑝 𝜉!|𝜃 and minimizing 𝐷NO 𝑞@!(, 𝜃 ‖𝑝 𝜃

27

action does not affect the belief

hard to compute directly

Predicting Forward Dynamics

1 Rein Houthooft et al.: VIME: Variational Information Maximization Exploration. NIPS 2016.
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Variational Information Maximizing Exploration (VIME)1:
§ Using the approximated distribution 𝑞, the intrinsic reward is

	𝑟!* = 𝐷NO 𝑞@!(, 𝜃 ||𝑞@$ 𝜃 ,

where 𝜙!(, are the parameters of 𝑞 after seeing 𝑎! and 𝑠!(,

§ Normalize by division by moving median to KL-divs when using as a reward

§ VIME uses a Bayesian neural network (BNN) to maintain a distribution over weights

§ The weights are modeled as Gaussians, and we can sample 𝜃~𝑞@(⋅)
§ KL-Divergence is estimated from the 2nd-order Taylor-expansion using the FIM

(which is easy to compute as the Gaussians result in a diagonal covariance matrix)

28
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Self-Supervised Exploration via Disagreement1:
§ Use an ensemble of prediction models and use their disagreement as bonus
§ High disagreement à low confidence à needs more exploration

§ 𝑟!* is differentiable à intrinsic reward can be directly optimized 
§ very efficient differentiable approach 

29

1 Deepal Pathak et al.: Self-Supervised Exploration via Disagreement. ICML 2019.

Self-Supervised Exploration via Disagreement
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Figure 1. Self-Supervised Exploration via Disagreement: At time step t, the agent in the state xt interacts with the environment by
taking action at sampled from the current policy ⇡ and ends up in the state xt+1. The ensemble of forward models {f1, f2, ..., fn} takes
this current state xt and the executed action at as input to predict the next state estimates {x̂1

t+1, x̂
2
t+2, ..., x̂

n
t+1}. The variance over the

ensemble of network output is used as intrinsic reward rit to train the policy ⇡. In practice, we encode the state x into an embedding space
�(x) for all the prediction purposes.

dynamics is unknown, it is treated as black-box and the
policy’s gradients have to be estimated using high-variance
estimators like REINFORCE (Williams, 1992) which are
extremely sample-inefficient in practice.

We address both the challenges by proposing an alternative
formulation for exploration taking inspiration from active
learning. The goal of active learning is to selectively pick
samples to label such that the classifier is maximally im-
proved. However, unlike current intrinsic motivation for-
mulations where an agent is rewarded by comparing the
prediction to the ground-truth, the importance of a sample
is not computed by looking at the ground-truth label but
rather by looking at the state of the classifier itself. For
instance, a popular approach is to label the most uncer-
tain samples by looking at the confidence of the classifier.
However, since most of the high-capacity deep neural net-
works tend to overfit, confidence is not a good measure of
uncertainty. Hence, taking an analogy from the Query-by-
Committee algorithm (Seung et al., 1992), we propose a
simple disagreement-based approach: we train an ensem-
ble of forward dynamics models and incentivize the agent
to explore the action space where there is maximum dis-
agreement or variance among the predictions of models
of this ensemble. Taking actions to maximize the model-
disagreement allows the agent to explore in a completely
self-supervised manner without relying on any external re-
wards. We show that this approach does not get stuck in
stochastic-dynamics scenarios because all the models in
the ensemble converge to mean, eventually reducing the
variance of the ensemble.

Furthermore, we show that our new objective is a differen-
tiable function allowing us to perform policy optimization
via direct likelihood maximization – much like supervised
learning instead of reinforcement learning. This leads to a

sample efficient exploration policy allowing us to deploy
it in a real robotic object manipulation setup with 7-DOF
Sawyer arm. We demonstrate the efficacy of our approach
on a variety of standard environments including stochas-
tic Atari games (Machado et al., 2017), MNIST, Mujoco,
Unity (Juliani et al., 2018) and a real robot.

2. Exploration via Disagreement

Consider an agent interacting with the environment E . At
time t, it receives the observation xt and then takes an action
predicted by its policy, i.e., at ⇠ ⇡(xt; ✓P ). Upon executing
the action, it receives, in return, the next observation xt+1

which is ‘generated’ by the environment. Our goal is to
build an agent that chooses its action in order to maximally
explore the state space of the environment in an efficient
manner. There are two main components to our agent: an
intrinsic forward prediction model that captures the agent’s
current knowledge of the states explored so far, and policy
to output actions. As our agent explores the environment,
we learn the agent’s forward prediction model to predict the
consequences of its own actions. The prediction uncertainty
of this model is used to incentivize the policy to visit states
with maximum uncertainty.

Both measuring and maximizing model uncertainty are chal-
lenging to execute with high dimensional raw sensory input
(e.g. images). More importantly, the agent should learn
to deal with ‘stochasticity’ in its interaction with the en-
vironment caused by either noisy actuation of the agent’s
motors, or the observations could be inherently stochastic.
A deterministic prediction model will always end up with a
non-zero prediction error allowing the agent to get stuck in
the local minima of exploration.

Similar behavior would occur if the task at hand is too
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§ From the noisy TV we can identify sources of prediction errors1

§ The prediction error is high
1. … where the predictor fails to generalize from previously seen examples.

Novel experience then corresponds to high prediction error
2. … because the prediction target is stochastic
3. … because information necessary for the prediction is missing, or

the model class of predictors is too limited to fit the complexity of the target function.

§ How can we avoid the issues raised by (2) and (3)?

§ What if the focus of our prediction task is not on environment dynamics at all?

§ Don’t care about the dynamics? Sounds crazy? Just wait…

30

But this is our basic assumption – we need this

1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.
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Directed Outreaching Reinforcement Action-Selection (DORA)1

§ We use MDPs:
§ (1) the original MDP
§ (2) a copy of (1) with 𝑟 𝑠, 𝑎 = 0, ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

§ We learn 𝑄 on (2), and we call the entries “E”-values
§ So, we learn 𝐸 𝑠, 𝑎
§ “E”-values are initialized with 1
§ The model should predict all the E-values to be 0

§ State-action pairs with high E-values lack information
§ This is very similar to visit counters

§ Given the predicted E-value 𝐸 𝑠!, 𝑎! , the exploration bonus is

𝑟* =
1

− log𝐸 𝑠!, 𝑎!
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Directed Outreaching Reinforcement Action-Selection (DORA)1

32
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Random Network Distillation (RND)1,2

§ Similar idea: predict something that is independent from the main task

§ We use two neural networks:
1. A randomly initialized but fixed

neural network to transform a state
into a feature space: 𝑓 𝑠!

2. A network u𝑓 𝑠!; 𝜃 	that we train to predict
the same features as the fixed network

à We want u𝑓 𝑠!; 𝜃 = 𝑓(𝑠!)

§ Intuition: Similar states have similar features
§ And if we have already seen them, we should

also have a lower error on predicting them!

§ We use an exploration bonus: 𝑟* 𝑠! = u𝑓 𝑠!; 𝜃 − 𝑓 𝑠! 0
0
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1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.
2 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/
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Random Network Distillation (RND)
§ Advantage of synthetic prediction problem:

§ The fixed network makes the prediction target deterministic (bypassing issue #2)
§ It is inside the class of functions that the predictor can represent (bypassing issue #3) if the predictor and the target 

network have the same architecture.

§ Results:
§ RND works well for hard-exploration problems

à maximizing RND bonus finds half of the rooms in Montezuma’s Revenge
§ Normalization is important! The scale of the rewards is tricky to

adjust given a random network as prediction target
à Normalize by a running estimate of standard deviations of intrinsic return

§ Non-episodic settings work better, especially in cases without
extrinsic rewards (the return is not truncated at game over and
intrinsic return can spread across multiple episodes)
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§ RND problem in episodic tasks1

35

1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.

Factor 1 is what allows one to use prediction error as an exploration bonus. In practice the prediction
error is caused by a combination of all of these factors, not all of them desirable.

For instance if the prediction problem is forward dynamics, then factor 2 results in the ‘noisy-TV’
problem. This is the thought experiment where an agent that is rewarded for errors in the prediction
of its forward dynamics model gets attracted to local sources of entropy in the environment. A TV
showing white noise would be such an attractor, as would a coin flip.

To avoid the undesirable factors 2 and 3, methods such as those by Schmidhuber (1991a); Oudeyer
et al. (2007); Lopes et al. (2012); Achiam & Sastry (2017) instead use a measurement of how much
the prediction model improves upon seeing a new datapoint. However these approaches tend to be
computationally expensive and hence difficult to scale.

RND obviates factors 2 and 3 since the target network can be chosen to be deterministic and inside
the model-class of the predictor network.

2.2.2 RELATION TO UNCERTAINTY QUANTIFICATION

RND prediction error is related to an uncertainty quantification method introduced by Osband et al.
(2018). Namely, consider a regression problem with data distribution D = {xi, yi}i. In the Bayesian
setting we would consider a prior p(✓⇤) over the parameters of a mapping f✓⇤ and calculate the
posterior after updating on the evidence.

Let F be the distribution over functions g✓ = f✓ + f✓⇤ , where ✓⇤ is drawn from p(✓⇤) and ✓ is given
by minimizing the expected prediction error

✓ = argmin
✓

E(xi,yi)⇠Dkf✓(xi) + f✓⇤(xi)� yik
2 +R(✓), (1)

where R(✓) is a regularization term coming from the prior (see Lemma 3, Osband et al. (2018)).
Osband et al. (2018) argue (by analogy to the case of Bayesian linear regression) that the ensemble F
is an approximation of the posterior.

If we specialize the regression targets yi to be zero, then the optimization problem
argmin✓ E(xi,yi)⇠Dkf✓(xi) + f✓⇤(xi)k2 is equivalent to distilling a randomly drawn function from
the prior. Seen from this perspective, each coordinate of the output of the predictor and target net-
works would correspond to a member of an ensemble (with parameter sharing amongst the ensemble),
and the MSE would be an estimate of the predictive variance of the ensemble (assuming the ensemble
is unbiased). In other words the distillation error could be seen as a quantification of uncertainty in
predicting the constant zero function.

2.3 COMBINING INTRINSIC AND EXTRINSIC RETURNS

In preliminary experiments that used only intrinsic rewards, treating the problem as non-episodic
resulted in better exploration. In that setting the return is not truncated at “game over”. We argue that
this is a natural way to do exploration in simulated environments, since the agent’s intrinsic return
should be related to all the novel states that it could find in the future, regardless of whether they all
occur in one episode or are spread over several. It is also argued in (Burda et al., 2018) that using
episodic intrinsic rewards can leak information about the task to the agent.

We also argue that this is closer to how humans explore games. For example let’s say Alice is playing
a videogame and is attempting a tricky maneuver to reach a suspected secret room. Because the
maneuver is tricky the chance of a game over is high, but the payoff to Alice’s curiosity will be high
if she succeeds. If Alice is modelled as an episodic reinforcement learning agent, then her future
return will be exactly zero if she gets a game over, which might make her overly risk averse. The real
cost of a game over to Alice is the opportunity cost incurred by having to play through the game from
the beginning (which is presumably less interesting to Alice having played the game for some time).

However using non-episodic returns for extrinsic rewards could be exploited by a strategy that finds a
reward close to the beginning of the game, deliberately restarts the game by getting a game over, and
repeats this in an endless cycle.

It is not obvious how to estimate the combined value of the non-episodic stream of intrinsic rewards
it and the episodic stream of extrinsic rewards et. Our solution is to observe that the return is linear in
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only for referencePrediction-based Exploration

§ Motivation:
§ In many application (such as robotics) it helps the RL agent to explicitly understand and infer physical properties (such as 

mass, friction, etc.)

§ Idea: Let an RL agent learn such properties by
1. Exploration phase: letting the agent interact with the environment (without any specific task)
2. Ask a question and give reward based on a labeling action (e.g.: Which of the boxes is heaviest?)

§ The agent must efficiently play around to figure out the physics and provide the correct answer
§ Exploration happens implicitly

1 Misha Denil et al.: Learning to Perform Physics Experiments via Deep Reinforcement Learning. ICLR 2017.

Published as a conference paper at ICLR 2017

Figure 1: Left: Diagram of the Which is Heavier environment. Blocks are always arranged in a line,
but mass of the different blocks changes from episode to episode. Right: Mass gap distributions for
different settings of � used in the experiments.

followed by a ReLU non-linearity. The three layers have 32, 64, 64 square filters with sizes 8,
4, 3, which are applied at strides of 4, 2, 1 respectively. We train the agents using Asynchronous
Advantage Actor Critic (Mnih et al., 2016), but ensure that the unroll length is always greater than
the timeout length so the agent network is unrolled over the entirety of each episode.

5 WHICH IS HEAVIER

The Which is Heavier environment is designed to ask a question about the relative masses of different
objects in a scene. We assign masses to objects in a way that is uncorrelated with their appearance
in order to ensure that the task is not solvable without interaction.

5.1 ENVIRONMENT

The environment is diagrammed in the left panel of Figure 1. It consists of four blocks, which are
constrained to only move vertically. The blocks are always the same size, but vary in mass between
episodes. The agent’s strength (i.e. magnitude of force it can apply) remains constant between
episodes.

The question to answer in this environment is which of the four blocks is the heaviest. Since the
mass of each block is randomly assigned in each episode, the agent must poke the blocks and observe
how they respond in order to make this determination. Assigning masses randomly ensures it is not
possible to solve this task from vision (or features) alone, since the appearance and identity of
each block imparts no information about its mass in the current episode. The only way to obtain
information about the masses of the blocks is to interact with them and watch how they respond.

The Which is Heavier environment is designed to encode a latent bandit problem through a “physi-
cal” lens. Each block corresponds to an arm of the bandit, and the reward obtained by pulling each
arm is proportional to the mass of the block. Identifying the heaviest block can then be seen as a
best arm identification problem (Audibert & Bubeck, 2010). Best arm identification is a well studied
problem in experimental design, and understanding of how an optimal solution to the latent bandit
should behave is used to guide our analysis of the agents we train on this task.

It is important to emphasize that we cannot simply apply standard bandit algorithms here, because
we impose a much higher level of prior ignorance on our algorithms than that setting allows. Ban-
dit algorithms assume that rewards are observed directly, whereas our agents observe mass through
its role in dynamics (and in the case of learning from pixels, through the lens of vision as well).
To maintain a bandit setting one could imagine parameterizing this transformation from reward to
observation, and perhaps even learning the mapping as well; however, doing so requires explicitly
acknowledging the mapping in the design of the learning algorithm, which we avoid doing. More-
over, acknowledging this mapping in any way requires the a-priori recognition of the existence of
the latent bandit structure. From the perspective of our learning algorithm the mere existence of
such a structure also lies beyond the veil of ignorance.

Controlling the distribution of masses allows us to control the difficulty of this task. In particular,
by controlling the size of the mass gap between the two heaviest blocks we can make the task more
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Memory-based Exploration
Memory-based Exploration

§ Reward-based exploration works well in many applications

§ However, it suffers from several disadvantages:
§ Function approximation is slow
§ Exploration bonus is non-stationary
§ Knowledge fading: states are no longer novel in time and do no longer provide intrinsic reward signals

Idea of memory-based exploration:

à Use external memories in combination to resolve such disadvantages!
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Memory-based Exploration

§ So far: RND works great but suffers from episodic settings
§ Idea: use two modules:

1. RND as a lifelong novelty module, and
2. an episodic novelty module for rapid in-episode adaptation

39
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Figure 1: (left) Training architecture for the embedding network (right) NGU’s reward generator.

2 THE NEVER-GIVE-UP INTRINSIC REWARD

We follow the literature on curiosity-driven exploration, where the extrinsic reward is augmented
with an intrinsic reward (or exploration bonus). The augmented reward at time t is then defined as
rt = r

e
t + �r

i
t, where ret and r

i
t are respectively the extrinsic and intrinsic rewards, and � is a positive

scalar weighting the relevance of the latter. Deep RL agents are typically trained on the augmented
reward rt, while performance is measured on extrinsic reward r

e
t only. This section describes the

proposed intrinsic reward r
i
t.

Our intrinsic reward r
i
t satisfies three properties: (i) it rapidly discourages revisiting the same state

within the same episode, (ii) it slowly discourages visits to states visited many times across episodes,
(iii) the notion of state ignores aspects of an environment that are not influenced by an agent’s actions.

We begin by providing a general overview of the computation of the proposed intrinsic reward. Then
we provide the details of each one of the components. The reward is composed of two blocks: an
episodic novelty module and an (optional) life-long novelty module, represented in red and green
respectively in Fig. 1 (right). The episodic novelty module computes our episodic intrinsic reward
and is composed of an episodic memory, M , and an embedding function f , mapping the current
observation to a learned representation that we refer to as controllable state. At the beginning of each
episode, the episodic memory starts completely empty. At every step, the agent computes an episodic
intrinsic reward, repisodic

t , and appends the controllable state corresponding to the current observation
to the memory M . To determine the bonus, the current observation is compared to the content of the
episodic memory. Larger differences produce larger episodic intrinsic rewards. The episodic intrinsic
reward r

episodic
t promotes the agent to visit as many different states as possible within a single episode.

This means that the notion of novelty ignores inter-episode interactions: a state that has been visited
thousands of times gives the same intrinsic reward as a completely new state as long as they are
equally novel given the history of the current episode.

A life-long (or inter-episodic) novelty module provides a long-term novelty signal to statefully control
the amount of exploration across episodes. We do so by multiplicatively modulating the exploration
bonus repisodic

t with a life-long curiosity factor, ↵t. Note that this modulation will vanish over time,
reducing our method to using the non-modulated reward. Specifically, we combine ↵t with r

episodic
t

as follows (see also Fig. 1 (right)):

r
i
t = r

episodic
t ·min {max {↵t, 1} , L} (1)

where L is a chosen maximum reward scaling (we fix L = 5 for all our experiments). Mixing rewards
this way, we leverage the long-term novelty detection that ↵t offers, while r

i
t continues to encourage

our agent to explore all the controllable states.

Embedding network: f : O ! Rp maps the current observation to a p-dimensional vector corre-
sponding to its controllable state. Consider an environment that has a lot of variability independent of
the agent’s actions, such as navigating a busy city with many pedestrians and vehicles. An agent could
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across multiple episodes
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episode reward 
(within one episode)

ICM

state encoding

Episodic Memory: Never Give Up (NGU)1
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Memory-based Exploration

§ So far: RND works great but suffers from episodic settings
§ Idea: use two modules:

1. RND as a lifelong novelty module, and
2. an episodic novelty module for rapid in-episode adaptation
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2 THE NEVER-GIVE-UP INTRINSIC REWARD

We follow the literature on curiosity-driven exploration, where the extrinsic reward is augmented
with an intrinsic reward (or exploration bonus). The augmented reward at time t is then defined as
rt = r

e
t + �r

i
t, where ret and r

i
t are respectively the extrinsic and intrinsic rewards, and � is a positive

scalar weighting the relevance of the latter. Deep RL agents are typically trained on the augmented
reward rt, while performance is measured on extrinsic reward r

e
t only. This section describes the

proposed intrinsic reward r
i
t.

Our intrinsic reward r
i
t satisfies three properties: (i) it rapidly discourages revisiting the same state

within the same episode, (ii) it slowly discourages visits to states visited many times across episodes,
(iii) the notion of state ignores aspects of an environment that are not influenced by an agent’s actions.

We begin by providing a general overview of the computation of the proposed intrinsic reward. Then
we provide the details of each one of the components. The reward is composed of two blocks: an
episodic novelty module and an (optional) life-long novelty module, represented in red and green
respectively in Fig. 1 (right). The episodic novelty module computes our episodic intrinsic reward
and is composed of an episodic memory, M , and an embedding function f , mapping the current
observation to a learned representation that we refer to as controllable state. At the beginning of each
episode, the episodic memory starts completely empty. At every step, the agent computes an episodic
intrinsic reward, repisodic

t , and appends the controllable state corresponding to the current observation
to the memory M . To determine the bonus, the current observation is compared to the content of the
episodic memory. Larger differences produce larger episodic intrinsic rewards. The episodic intrinsic
reward r

episodic
t promotes the agent to visit as many different states as possible within a single episode.

This means that the notion of novelty ignores inter-episode interactions: a state that has been visited
thousands of times gives the same intrinsic reward as a completely new state as long as they are
equally novel given the history of the current episode.

A life-long (or inter-episodic) novelty module provides a long-term novelty signal to statefully control
the amount of exploration across episodes. We do so by multiplicatively modulating the exploration
bonus repisodic

t with a life-long curiosity factor, ↵t. Note that this modulation will vanish over time,
reducing our method to using the non-modulated reward. Specifically, we combine ↵t with r

episodic
t

as follows (see also Fig. 1 (right)):

r
i
t = r

episodic
t ·min {max {↵t, 1} , L} (1)

where L is a chosen maximum reward scaling (we fix L = 5 for all our experiments). Mixing rewards
this way, we leverage the long-term novelty detection that ↵t offers, while r

i
t continues to encourage

our agent to explore all the controllable states.

Embedding network: f : O ! Rp maps the current observation to a p-dimensional vector corre-
sponding to its controllable state. Consider an environment that has a lot of variability independent of
the agent’s actions, such as navigating a busy city with many pedestrians and vehicles. An agent could
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• RND derives a life-long novelty bonus
• The exploration bonus is given as

𝛼" = 1 + #&'( $) %&*
'*

, with 

• the running mean 𝜇# 	, and
• the running standard deviation 𝜎#
of the RND error 𝑒()*(𝑠")	
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2 THE NEVER-GIVE-UP INTRINSIC REWARD

We follow the literature on curiosity-driven exploration, where the extrinsic reward is augmented
with an intrinsic reward (or exploration bonus). The augmented reward at time t is then defined as
rt = r

e
t + �r

i
t, where ret and r

i
t are respectively the extrinsic and intrinsic rewards, and � is a positive

scalar weighting the relevance of the latter. Deep RL agents are typically trained on the augmented
reward rt, while performance is measured on extrinsic reward r

e
t only. This section describes the

proposed intrinsic reward r
i
t.

Our intrinsic reward r
i
t satisfies three properties: (i) it rapidly discourages revisiting the same state

within the same episode, (ii) it slowly discourages visits to states visited many times across episodes,
(iii) the notion of state ignores aspects of an environment that are not influenced by an agent’s actions.

We begin by providing a general overview of the computation of the proposed intrinsic reward. Then
we provide the details of each one of the components. The reward is composed of two blocks: an
episodic novelty module and an (optional) life-long novelty module, represented in red and green
respectively in Fig. 1 (right). The episodic novelty module computes our episodic intrinsic reward
and is composed of an episodic memory, M , and an embedding function f , mapping the current
observation to a learned representation that we refer to as controllable state. At the beginning of each
episode, the episodic memory starts completely empty. At every step, the agent computes an episodic
intrinsic reward, repisodic

t , and appends the controllable state corresponding to the current observation
to the memory M . To determine the bonus, the current observation is compared to the content of the
episodic memory. Larger differences produce larger episodic intrinsic rewards. The episodic intrinsic
reward r

episodic
t promotes the agent to visit as many different states as possible within a single episode.

This means that the notion of novelty ignores inter-episode interactions: a state that has been visited
thousands of times gives the same intrinsic reward as a completely new state as long as they are
equally novel given the history of the current episode.

A life-long (or inter-episodic) novelty module provides a long-term novelty signal to statefully control
the amount of exploration across episodes. We do so by multiplicatively modulating the exploration
bonus repisodic

t with a life-long curiosity factor, ↵t. Note that this modulation will vanish over time,
reducing our method to using the non-modulated reward. Specifically, we combine ↵t with r

episodic
t

as follows (see also Fig. 1 (right)):

r
i
t = r

episodic
t ·min {max {↵t, 1} , L} (1)

where L is a chosen maximum reward scaling (we fix L = 5 for all our experiments). Mixing rewards
this way, we leverage the long-term novelty detection that ↵t offers, while r

i
t continues to encourage

our agent to explore all the controllable states.

Embedding network: f : O ! Rp maps the current observation to a p-dimensional vector corre-
sponding to its controllable state. Consider an environment that has a lot of variability independent of
the agent’s actions, such as navigating a busy city with many pedestrians and vehicles. An agent could
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2 THE NEVER-GIVE-UP INTRINSIC REWARD

We follow the literature on curiosity-driven exploration, where the extrinsic reward is augmented
with an intrinsic reward (or exploration bonus). The augmented reward at time t is then defined as
rt = r

e
t + �r

i
t, where ret and r

i
t are respectively the extrinsic and intrinsic rewards, and � is a positive

scalar weighting the relevance of the latter. Deep RL agents are typically trained on the augmented
reward rt, while performance is measured on extrinsic reward r

e
t only. This section describes the

proposed intrinsic reward r
i
t.

Our intrinsic reward r
i
t satisfies three properties: (i) it rapidly discourages revisiting the same state

within the same episode, (ii) it slowly discourages visits to states visited many times across episodes,
(iii) the notion of state ignores aspects of an environment that are not influenced by an agent’s actions.

We begin by providing a general overview of the computation of the proposed intrinsic reward. Then
we provide the details of each one of the components. The reward is composed of two blocks: an
episodic novelty module and an (optional) life-long novelty module, represented in red and green
respectively in Fig. 1 (right). The episodic novelty module computes our episodic intrinsic reward
and is composed of an episodic memory, M , and an embedding function f , mapping the current
observation to a learned representation that we refer to as controllable state. At the beginning of each
episode, the episodic memory starts completely empty. At every step, the agent computes an episodic
intrinsic reward, repisodic

t , and appends the controllable state corresponding to the current observation
to the memory M . To determine the bonus, the current observation is compared to the content of the
episodic memory. Larger differences produce larger episodic intrinsic rewards. The episodic intrinsic
reward r

episodic
t promotes the agent to visit as many different states as possible within a single episode.

This means that the notion of novelty ignores inter-episode interactions: a state that has been visited
thousands of times gives the same intrinsic reward as a completely new state as long as they are
equally novel given the history of the current episode.

A life-long (or inter-episodic) novelty module provides a long-term novelty signal to statefully control
the amount of exploration across episodes. We do so by multiplicatively modulating the exploration
bonus repisodic

t with a life-long curiosity factor, ↵t. Note that this modulation will vanish over time,
reducing our method to using the non-modulated reward. Specifically, we combine ↵t with r

episodic
t

as follows (see also Fig. 1 (right)):

r
i
t = r

episodic
t ·min {max {↵t, 1} , L} (1)

where L is a chosen maximum reward scaling (we fix L = 5 for all our experiments). Mixing rewards
this way, we leverage the long-term novelty detection that ↵t offers, while r

i
t continues to encourage

our agent to explore all the controllable states.

Embedding network: f : O ! Rp maps the current observation to a p-dimensional vector corre-
sponding to its controllable state. Consider an environment that has a lot of variability independent of
the agent’s actions, such as navigating a busy city with many pedestrians and vehicles. An agent could
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= 𝑟!" ⋅ 𝑐𝑙𝑖𝑝 𝛼!, 1, 𝐿 , with
𝐿 being a reward scaler.

à Do not revisit the same state within the same episode!
à Try to not revisit the states you already saw in previous episodes!

Episodic Memory: Never Give Up (NGU)1

1 Badia et al.: Never Give Up: Learning Directed Exploration Strategies. ICLR 2020.



Memory-based Exploration
Agent571

§ Agent57 is the first RL agent who beats Atari57 consistently
§ Two main improvements over NGU:

1. Population of policies:

§ Each policy has its own pair of exploration parameters 𝛽Z, 𝛾Z Z[,
5

§ Policies with high 𝛽Z (and lower 𝛾Z) make more progress at early stages

§ Policies with high 𝛾Z (and lower 𝛽Z) make more progress at later stages

§ A meta-controller (sliding window UCB) is trained to select from the policies

2. Re-Parameterization of Q-value function:
§ Q-function is decomposed into intrinsic and extrinsic influence:

    𝑄 𝑠, 𝑎; 𝜃Z* = 𝑄 𝑠, 𝑎; 𝜃Z) + 𝛽Z𝑄 𝑠, 𝑎; 𝜃Z*

§ During training both parameter sets (𝜃) and 𝜃*) are optimized separately
with rewards 𝑟Z) and 𝑟Z*, respectively
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Memory-based Exploration
Episodic Curiosity through Reachability1

§ There is a better thing than using the Euclidean distance*

§ Episodic Curiosity (EC) module:
§ Measure the number of steps needed to

transit between two states
§ The novelty than depends on the reachability

between states

§ General idea/steps:
1. Clear episodic memory 𝑀 on environment reset
2. At each step 𝑡 until the episode ends:

1. Compare 𝑠! with all the states in the memory
2. If it takes more than 𝑘 steps to reach 𝑠! à agent gets a bonus
3. If the novelty bonus is large enough à add 𝑠! to 𝑀

§ But how can we estimate the reachability?

44 1 Savinov et al.: Episodic Curiosity through Reachability. ICLR 2019.

* In fact: this paper was published before the NGU paper!

Published as a conference paper at ICLR 2019

Observations
in memory

Reachable from memory
in ≤ k steps (not novel)

Far from memory –
takes > k steps to reach

(novel)

Figure 1: We define novelty through reach-
ability. The nodes in the graph are observa-
tions, the edges — possible transitions. The
blue nodes are already in memory, the green
nodes are reachable from the memory within
k = 2 steps (not novel), the orange nodes
are further away — take more than k steps
to reach (novel). In practice, the full possible
transition graph is not available, so we train
a neural network approximator to predict if
the distance in steps between observations is
larger or smaller than k.

intuition can be formalized as giving a reward only for those observations which take some effort to
reach (outside the already explored part of the environment). The effort is measured in the number of
environment steps. To estimate it we train a neural network approximator: given two observations,
it would predict how many steps separate them. The concept of novelty via reachability is illustrated
in Figure 1. To make the description above practically implementable, there is still one piece miss-
ing though. For determining the novelty of the current observation, we need to keep track of what
was already explored in the environment. A natural candidate for that purpose would be episodic
memory: it stores instances of the past which makes it easy to apply the reachability approximator
on pairs of current and past observations.

Our method works as follows. The agent starts with an empty memory at the beginning of the
episode and at every step compares the current observation with the observations in memory to
determine novelty. If the current observation is indeed novel — takes more steps to reach from
observations in memory than a threshold — the agent rewards itself with a bonus and adds the
current observation to the episodic memory. The process continues until the end of the episode,
when the memory is wiped clean.

We benchmark our method on a range of tasks from visually rich 3D environments VizDoom, DM-

Lab and MuJoCo. We conduct the comparison with other methods — including the state-of-the-art
curiosity method ICM (Pathak et al., 2017) — under the same budget of environment interactions.
First, we use the VizDoom environments from prior work to establish that our re-implementation of
the ICM baseline is correct — and also demonstrate at least 2 times faster convergence of our method
with respect to the baseline. Second, in the randomized procedurally generated environments from
DMLab our method turns out to be more robust to spurious behaviours than the method ICM: while
the baseline learns a persistent firing behaviour in navigational tasks (thus creating interesting pic-
tures for itself), our method learns a reasonable explorative behaviour. In terms of quantitative
evaluation, our method reaches the goal at least 2 times more often in the procedurally generated
test levels in DMLab with a very sparse reward. Third, when comparing the behaviour of the agent in
the complete absence of rewards, our method covers at least 4 times more area (measured in discrete
(x, y) coordinate cells) than the baseline ICM. Fourth, we demonstrate that our curiosity bonus does
not significantly deteriorate performance of the plain PPO algorithm (Schulman et al., 2017) in two
tasks with dense reward in DMLab. Finally, we demonstrate that an ant in a MuJoCo environment
can learn locomotion purely from our curiosity reward computed based on the first-person view.

2 EPISODIC CURIOSITY

We consider an agent which interacts with an environment. The interactions happen at discrete time
steps over the episodes of limited duration T . At each time step t, the environment provides the agent
with an observation ot from the observational space O (we consider images), samples an action at
from a set of actions A using a probabilistic policy ⇡(ot) and receives a scalar reward rt 2 R
together with the new observation ot+1 and an end-of-episode indicator. The goal of the agent is to
optimize the expectation of the discounted sum of rewards during the episode S =

P
t �

trt.

In this work we primarily focus on the tasks where rewards rt are sparse — that is, zero for most of
the time steps t. Under such conditions commonly used RL algorithms (e.g., PPO Schulman et al.
(2017)) do not work well. We further introduce an episodic curiosity (EC) module which alleviates
this problem. The purpose of this module is to produce a reward bonus bt which is further summed
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Memory-based Exploration

§ Ideally, we would have access to a transition graph
1. Not possible to build up (due to limited memory)
2. Hard to build

§ Solution: Train a Siamese neural network
that predicts how far two states are apart

§ Embedding network 𝐸: 	𝒪 → 	ℝ+
(encodes states to feature vectors)

§ Comparator network 𝐶:	ℝ+	×	ℝ+ → 0,1
(reachability within 𝑘 steps: 0 (not reachable) to 1 (reachable))

§ “R-network” as a classifier trained with
logistic regression loss, based on trajectory data:

à Hence: 𝑅 𝑜*, 𝑜Z = 𝐶 𝐸 𝑜* , 𝐸 𝑜Z
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Figure 2: Left: siamese architecture of reachability (R) network. Right: R-network is trained based
on a sequence of observations that the agent encounters while acting. The temporally close (within
threshold) pairs of observations are positive examples, while temporally far ones — negatives.

up with the task reward rt to give an augmented reward brt = rt + bt. The augmented reward has a
nice property from the RL point of view — it is a dense reward. Learning with such reward is faster,
more stable and often leads to better final performance in terms of the cumulative task reward S.

In the following section we describe the key components of our episodic curiosity module.

2.1 EPISODIC CURIOSITY MODULE

The episodic curiosity (EC) module takes the current observation o as input and produces a reward
bonus b. The module consists of both parametric and non-parametric components. There are two
parametric components: an embedding network E : O ! Rn and a comparator network C :
Rn

⇥Rn
! [0, 1]. Those parametric components are trained together to predict reachability as parts

of the reachability network — shown in Figure 2. There are also two non-parametric components:
an episodic memory buffer M and a reward bonus estimation function B. The high-level overview
of the system is shown in Figure 3. Next, we give a detailed explanation of all the components.

Embedding and comparator networks. Both networks are designed to function jointly for estimat-
ing within-k-step-reachability of one observation oi from another observation oj as parts of a reach-
ability network R(oi,oj) = C(E(oi), E(oj)). This is a siamese architecture similar to (Zagoruyko
& Komodakis, 2015). The architecture is shown in Figure 2. R-network is a classifier trained with a
logistic regression loss: it predicts values close to 0 if probability of two observations being reach-
able from one another within k steps is low, and values close to 1 when this probability is high. Inside
the episodic curiosity the two networks are used separately to save up computation and memory.

Episodic memory. The episodic memory buffer M stores embeddings of past observations from
the current episode, computed with the embedding network E. The memory buffer has a limited
capacity K to avoid memory and performance issues. At every step, the embedding of the current
observation might be added to the memory. What to do when the capacity is exceeded? One solution
we found working well in practice is to substitute a random element in memory with the current
element. This way there are still more fresh elements in memory than older ones, but the older
elements are not totally neglected.

Reward bonus estimation module. The purpose of this module is to check for reachable observa-
tions in memory and if none is found — assign larger reward bonus to the current time step. The
check is done by comparing embeddings in memory to the current embedding via comparator net-
work. Essentially, this check insures that no observation in memory can be reached by taking only a
few actions from the current state — our characterization of novelty.

2.2 BONUS COMPUTATION ALGORITHM.

At every time step, the current observation o goes through the embedding network producing the
embedding vector e = E(o). This embedding vector is compared with the stored embeddings in
the memory buffer M =

⌦
e1, . . . , e|M|

↵
via the comparator network C where |M| is the current

number of elements in memory. This comparator network fills the reachability buffer with values

ci = C(ei, e), i = 1, |M|. (1)
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Observations
in memory

Reachable from memory
in ≤ k steps (not novel)

Far from memory –
takes > k steps to reach

(novel)

Figure 1: We define novelty through reach-
ability. The nodes in the graph are observa-
tions, the edges — possible transitions. The
blue nodes are already in memory, the green
nodes are reachable from the memory within
k = 2 steps (not novel), the orange nodes
are further away — take more than k steps
to reach (novel). In practice, the full possible
transition graph is not available, so we train
a neural network approximator to predict if
the distance in steps between observations is
larger or smaller than k.

intuition can be formalized as giving a reward only for those observations which take some effort to
reach (outside the already explored part of the environment). The effort is measured in the number of
environment steps. To estimate it we train a neural network approximator: given two observations,
it would predict how many steps separate them. The concept of novelty via reachability is illustrated
in Figure 1. To make the description above practically implementable, there is still one piece miss-
ing though. For determining the novelty of the current observation, we need to keep track of what
was already explored in the environment. A natural candidate for that purpose would be episodic
memory: it stores instances of the past which makes it easy to apply the reachability approximator
on pairs of current and past observations.

Our method works as follows. The agent starts with an empty memory at the beginning of the
episode and at every step compares the current observation with the observations in memory to
determine novelty. If the current observation is indeed novel — takes more steps to reach from
observations in memory than a threshold — the agent rewards itself with a bonus and adds the
current observation to the episodic memory. The process continues until the end of the episode,
when the memory is wiped clean.

We benchmark our method on a range of tasks from visually rich 3D environments VizDoom, DM-

Lab and MuJoCo. We conduct the comparison with other methods — including the state-of-the-art
curiosity method ICM (Pathak et al., 2017) — under the same budget of environment interactions.
First, we use the VizDoom environments from prior work to establish that our re-implementation of
the ICM baseline is correct — and also demonstrate at least 2 times faster convergence of our method
with respect to the baseline. Second, in the randomized procedurally generated environments from
DMLab our method turns out to be more robust to spurious behaviours than the method ICM: while
the baseline learns a persistent firing behaviour in navigational tasks (thus creating interesting pic-
tures for itself), our method learns a reasonable explorative behaviour. In terms of quantitative
evaluation, our method reaches the goal at least 2 times more often in the procedurally generated
test levels in DMLab with a very sparse reward. Third, when comparing the behaviour of the agent in
the complete absence of rewards, our method covers at least 4 times more area (measured in discrete
(x, y) coordinate cells) than the baseline ICM. Fourth, we demonstrate that our curiosity bonus does
not significantly deteriorate performance of the plain PPO algorithm (Schulman et al., 2017) in two
tasks with dense reward in DMLab. Finally, we demonstrate that an ant in a MuJoCo environment
can learn locomotion purely from our curiosity reward computed based on the first-person view.

2 EPISODIC CURIOSITY

We consider an agent which interacts with an environment. The interactions happen at discrete time
steps over the episodes of limited duration T . At each time step t, the environment provides the agent
with an observation ot from the observational space O (we consider images), samples an action at
from a set of actions A using a probabilistic policy ⇡(ot) and receives a scalar reward rt 2 R
together with the new observation ot+1 and an end-of-episode indicator. The goal of the agent is to
optimize the expectation of the discounted sum of rewards during the episode S =

P
t �

trt.

In this work we primarily focus on the tasks where rewards rt are sparse — that is, zero for most of
the time steps t. Under such conditions commonly used RL algorithms (e.g., PPO Schulman et al.
(2017)) do not work well. We further introduce an episodic curiosity (EC) module which alleviates
this problem. The purpose of this module is to produce a reward bonus bt which is further summed
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Figure 2: Left: siamese architecture of reachability (R) network. Right: R-network is trained based
on a sequence of observations that the agent encounters while acting. The temporally close (within
threshold) pairs of observations are positive examples, while temporally far ones — negatives.

up with the task reward rt to give an augmented reward brt = rt + bt. The augmented reward has a
nice property from the RL point of view — it is a dense reward. Learning with such reward is faster,
more stable and often leads to better final performance in terms of the cumulative task reward S.

In the following section we describe the key components of our episodic curiosity module.

2.1 EPISODIC CURIOSITY MODULE

The episodic curiosity (EC) module takes the current observation o as input and produces a reward
bonus b. The module consists of both parametric and non-parametric components. There are two
parametric components: an embedding network E : O ! Rn and a comparator network C :
Rn

⇥Rn
! [0, 1]. Those parametric components are trained together to predict reachability as parts

of the reachability network — shown in Figure 2. There are also two non-parametric components:
an episodic memory buffer M and a reward bonus estimation function B. The high-level overview
of the system is shown in Figure 3. Next, we give a detailed explanation of all the components.

Embedding and comparator networks. Both networks are designed to function jointly for estimat-
ing within-k-step-reachability of one observation oi from another observation oj as parts of a reach-
ability network R(oi,oj) = C(E(oi), E(oj)). This is a siamese architecture similar to (Zagoruyko
& Komodakis, 2015). The architecture is shown in Figure 2. R-network is a classifier trained with a
logistic regression loss: it predicts values close to 0 if probability of two observations being reach-
able from one another within k steps is low, and values close to 1 when this probability is high. Inside
the episodic curiosity the two networks are used separately to save up computation and memory.

Episodic memory. The episodic memory buffer M stores embeddings of past observations from
the current episode, computed with the embedding network E. The memory buffer has a limited
capacity K to avoid memory and performance issues. At every step, the embedding of the current
observation might be added to the memory. What to do when the capacity is exceeded? One solution
we found working well in practice is to substitute a random element in memory with the current
element. This way there are still more fresh elements in memory than older ones, but the older
elements are not totally neglected.

Reward bonus estimation module. The purpose of this module is to check for reachable observa-
tions in memory and if none is found — assign larger reward bonus to the current time step. The
check is done by comparing embeddings in memory to the current embedding via comparator net-
work. Essentially, this check insures that no observation in memory can be reached by taking only a
few actions from the current state — our characterization of novelty.

2.2 BONUS COMPUTATION ALGORITHM.

At every time step, the current observation o goes through the embedding network producing the
embedding vector e = E(o). This embedding vector is compared with the stored embeddings in
the memory buffer M =

⌦
e1, . . . , e|M|

↵
via the comparator network C where |M| is the current

number of elements in memory. This comparator network fills the reachability buffer with values

ci = C(ei, e), i = 1, |M|. (1)
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Memory-based Exploration
Episodic Curiosity through Reachability

§ Putting all together: Episodic Curiosity (EC) Module
§ At every time step

1. Embedding network processes 𝑜! à embedding vector 𝑒 = 𝐸 𝑜!

2. Compare 𝑒 with all embeddings in the buffer 𝑀 = 𝑒,, … , 𝑒 \ via 𝐶
à fills the reachability buffer with values

             𝑐* = 𝐶 𝑒*, 𝑒 , 	 𝑖 = 1,… ,𝑀.

3. Compute the similarity score between 𝑒 and the memory buffer 𝑀 as 𝐶 𝑀, 𝑒 = 𝐹 𝑐,, … , 𝑐 \ ∈ 0,1 , where 𝐹 ⋅ is a 
hyperparameter (function). 
§ max(⋅) would theoretically be a good choice but is prone to outliers
§ 90th percentile works better in experiments.

4. Compute the curiosity bonus as 𝑏 = 𝐵 𝑀, 𝑒 = 𝛼 𝛽 − 𝐶 𝑀, 𝑒
§ 𝛼 tunes scale of task rewards
§ 𝛽 defines the sign of the reward (0.5 works well for fixed-duration episodes)
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Figure 3: The use of episodic curiosity (EC) module for reward bonus computation. The module
take a current observation as input and computes a reward bonus which is higher for novel observa-
tions. This bonus is later summed up with the task reward and used for training an RL agent.

Then the similarity score between the memory buffer and the current embedding is computed from
the reachability buffer as (with a slight abuse of notation)

C(M, e) = F
�
c1, . . . , c|M|

�
2 [0, 1]. (2)

where the aggregation function F is a hyperparameter of our method. Theoretically, F = max
would be a good choice, however, in practice it is prone to outliers coming from the parametric
embedding and comparator networks. Empirically, we found that 90-th percentile works well as a
robust substitute to maximum.

As a curiosity bonus, we take

b = B(M, e) = ↵(� � C(M, e)), (3)

where ↵ 2 R+ and � 2 R are hyperparameters of our method. The value of ↵ depends on the
scale of task rewards — we will discuss how to select it in the experimental section. The value
of � determines the sign of the reward — and thus could bias the episodes to be shorter or longer.
Empirically, � = 0.5 works well for fixed-duration episodes, and � = 1 is preferred if an episode
could have variable length.

After the bonus computation, the observation embedding is added to memory if the bonus b is
larger than a novelty threshold bnovelty . This check is necessary for the following reason. If every
observation embedding is added to the memory buffer, the observation from the current step will
always be reachable from the previous step. Thus, the reward would never be granted. The threshold
bnovelty induces a discretization in the embedding space. Intuitively, this makes sense: only “distinct
enough” memories are stored. As a side benefit, the memory buffer stores information with much
less redundancy. We refer the reader to the video1 which visualizes the curiosity reward bonus and
the memory state during the operation of the algorithm.

2.3 REACHABILITY NETWORK TRAINING

If the full transition graph in Figure 1 was available, there would be no need of a reachability net-
work and the novelty could be computed analytically through the shortest-path algorithm. However,
normally we have access only to the sequence of observations which the agent receives while acting.
Fortunately, as suggested by (Savinov et al., 2018), even a simple observation sequence graph could
still be used for training a reasonable approximator to the real step-distance. This procedure is illus-
trated in Figure 2. This procedure takes as input a sequence of observations o1, . . . ,oN and forms
pairs from those observations. The pairs (oi,oj) where |i� j|  k are taken as positive (reachable)
examples while the pairs with |i � j| > �k become negative examples. The hyperparameter � is
necessary to create a gap between positive and negative examples. In the end, the network is trained
with logistic regression loss to output the probability of the positive (reachable) class.

In our work, we have explored two settings for training a reachability network: using a random
policy and together with the task-solving policy (online training). The first version generally follows
the training protocol proposed by (Savinov et al., 2018). We put the agent into exactly the same

1https://youtu.be/mphIRR6VsbM
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Memory-based Exploration
Direct Exploration

Go-Explore1

§ The problems stemming from sparse rewards and
intrinsic motivation are two-fold:
1. Detachment

§ Intrinsic rewards are nearly always a consumable
resource: short-term focus lies on such areas but
with time they become less interesting to the agent

§ Catastrophic forgetting: we forget things that happened
far in the past

2. Derailment
§ Describes the problem of re-visiting an interesting state

again, in order to further explore from there
§ Previous work runs the policy again (with stochastic perturbation) in a ”hope” to reach the desired state again

à with naïve perturbations in complex environments this becomes highly unlikely
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1 Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.
see also: https://towardsdatascience.com/a-short-introduction-to-go-explore-c61c2ef201f0



Memory-based Exploration
Direct Exploration: Go-Explore

Go-Explore1 addresses detachment and derailment using two phases:

1. Explore until solved
§ No ML and NNs involved here. Just random (or

semi-guided) exploration
§ Main goal: find interesting cells

§ Newly discovered & high reward obtained to reach them
§ For each interesting cell we store the

1. full trajectory to get there
2. a snapshot of the environment state
3. total reward of the trajectory
4. length of the trajectory

§ If we revisit a state
§ Update the entry if it is better

(i.e., short trajectory, higher reward)
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Figure 1: A hypothetical example of detachment in intrinsic motivation (IM) algorithms. Green
areas indicate intrinsic reward, white indicates areas where no intrinsic reward remains, and purple
areas indicate where the algorithm is currently exploring. (1) The agent starts each episode between
the two mazes. (2) It may by chance start exploring the West maze and IM may drive it to learn to
traverse, say, 50% of it. (3) Because current algorithms sprinkle in randomness (either in actions or
parameters) to try to produce new behaviors to find explicit or intrinsic rewards, by chance the agent
may at some point begin exploring the East maze, where it will also encounter a lot of intrinsic reward.
After completely exploring the East maze, it has no explicit memory of the promising exploration
frontier it abandoned in the West maze. It likely would also have no implicit memory of this frontier
due to the problem of catastrophic forgetting [17–20]. (4) Worse, the path leading to the frontier in
the West maze has already been explored, so no (or little) intrinsic motivation remains to rediscover
it. We thus say the algorithm has detached from a frontier of states that provide intrinsic motivation.
As a result, exploration can stall when areas close to where the current agent visits have already
been explored. This problem would be remedied if the agent remembered and returned to previously
discovered promising areas for exploration, which Go-Explore does.

Phase 1: explore until solved Phase 2: robustify
(if necessary)

Go to state
Explore

from state
Update 
archive

Run imitation learning
on best trajectory

Select state
from archive

Figure 2: A high-level overview of the Go-Explore algorithm.

and from which further exploration might be most effective. To address derailment, an insight in
Go-Explore is that effective exploration can be decomposed into first returning to a promising state
(without intentionally adding any exploration) before then exploring further.

Go-Explore is an explicit response to both detachment and derailment that is also designed to achieve
robust solutions in stochastic environments. The version presented here works in two phases (Fig. 2):
(1) first solve the problem in a way that may be brittle, such as solving a deterministic version of the
problem (i.e. discover how to solve the problem at all), and (2) then robustify (i.e. train to be able to
reliably perform the solution in the presence of stochasticity).1 Similar to IM algorithms, Phase 1
focuses on exploring infrequently visited states, which forms the basis for dealing with sparse-reward

1Note that this second phase is in principle not necessary if Phase 1 itself produces a policy that can handle
stochastic environments (Section 2.1.3).

3

Go Explore

Use a heuristic to choose a good cell and go there
(i.e., best reward, least-visited,…)

Perform random actions from thereon
(no policy, no network)

1 Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.



Memory-based Exploration

Go-Explore1 addresses detachment and derailment using two phases:
§ Limitation of 1st phase: go to a cell is only “easy” in deterministic environments!

2. Robustify (if needed): “Backward“ algorithm
§ Consider a sequence 𝑐,, 𝑐0, … , 𝑐+],, 𝑐+, where 𝑐+ is the “go” cell
§ Algorithm:

1. Initialize 𝑐* = 𝑐+],
2. Set environment to the snapshot of 𝑐* and train the agent to reach 𝑐+
3. When agent finds a trajectory with an equal or higher reward:

à set 𝑖 ← 𝑖 − 1
à go to step 2

4. Stop when 𝑖 = 1

§ How to make policies more robust to non-determinism in Atari?
§ No ops
§ Sticky actions
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Figure 1: A hypothetical example of detachment in intrinsic motivation (IM) algorithms. Green
areas indicate intrinsic reward, white indicates areas where no intrinsic reward remains, and purple
areas indicate where the algorithm is currently exploring. (1) The agent starts each episode between
the two mazes. (2) It may by chance start exploring the West maze and IM may drive it to learn to
traverse, say, 50% of it. (3) Because current algorithms sprinkle in randomness (either in actions or
parameters) to try to produce new behaviors to find explicit or intrinsic rewards, by chance the agent
may at some point begin exploring the East maze, where it will also encounter a lot of intrinsic reward.
After completely exploring the East maze, it has no explicit memory of the promising exploration
frontier it abandoned in the West maze. It likely would also have no implicit memory of this frontier
due to the problem of catastrophic forgetting [17–20]. (4) Worse, the path leading to the frontier in
the West maze has already been explored, so no (or little) intrinsic motivation remains to rediscover
it. We thus say the algorithm has detached from a frontier of states that provide intrinsic motivation.
As a result, exploration can stall when areas close to where the current agent visits have already
been explored. This problem would be remedied if the agent remembered and returned to previously
discovered promising areas for exploration, which Go-Explore does.
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(if necessary)
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Figure 2: A high-level overview of the Go-Explore algorithm.

and from which further exploration might be most effective. To address derailment, an insight in
Go-Explore is that effective exploration can be decomposed into first returning to a promising state
(without intentionally adding any exploration) before then exploring further.

Go-Explore is an explicit response to both detachment and derailment that is also designed to achieve
robust solutions in stochastic environments. The version presented here works in two phases (Fig. 2):
(1) first solve the problem in a way that may be brittle, such as solving a deterministic version of the
problem (i.e. discover how to solve the problem at all), and (2) then robustify (i.e. train to be able to
reliably perform the solution in the presence of stochasticity).1 Similar to IM algorithms, Phase 1
focuses on exploring infrequently visited states, which forms the basis for dealing with sparse-reward

1Note that this second phase is in principle not necessary if Phase 1 itself produces a policy that can handle
stochastic environments (Section 2.1.3).

3

Direct Exploration: Go-Explore

1 Adrian Ecoffet et al.: Go-Explore: a new Approach for Hard-Exploration Problems. 2020.
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Figure 6: History of progress on Montezuma’s Revenge vs. the version of Go-Explore that does
not harness domain knowledge. Go-Explore significantly improves on the prior state of the art.
These data are presented in tabular form in Appendix A.9.

for a robustification run. When training with 10 demonstration trajectories, all 5 robustification runs
were successful. Fig. 5b shows an example of successful robustification with 10 trajectories.

In the end, our robustified policies achieve a mean score of 43,763 (CI: 36,718 – 50,196), substantially
higher than the human expert mean of 34,900 [27]. All policies successfully solve level 1 (with a
99.8% success rate over different stochastic evaluations of the policies), and one of our 5 policies
also solves level 2 100% of the time. Fig. 6 shows how these results compare with prior work.

Surprisingly, the computational cost of Phase 2 is greater than that of Phase 1. These Phase 2 results
were achieved after a mean of 4.35B (CI: 4.27B – 4.45B) game frames of training, which took a
mean of 2.4 (CI: 2.4 – 2.5) days of training (details in Appendix A.8).

3.1.2 With domain knowledge in the cell representation

On Montezuma’s Revenge, when harnessing domain knowledge in its cell representation (Sec-
tion 2.1.1), Phase 1 of Go-Explore finds a total of 238 (CI: 231 – 245) rooms, solves a mean of 9.1
(CI: 8.8 – 9.4) levels (with every run solving at least 7 levels), and does so in roughly half as many
game frames as with the downscaled image cell representation (Fig. 7a). Its scores are also extremely
high, with a mean of 148,220 (CI: 144,580 – 151,730) (Fig. 7c). These results are averaged over 50
runs.

As with the downscaled version, Phase 1 of Go-Explore with domain knowledge was still discovering
additional rooms, cells, and ever-higher scores linearly when it was stopped (Fig. 7). Indeed, because
every level of Montezuma’s Revenge past level 3 is nearly identical to level 3 (except for the scores
on the screen and the stochastic timing of events) and because each run had already passed level 3, it
would likely continue to find new rooms, cells, and higher scores forever.

Domain knowledge runs spend less time exploiting the treasure room bug because we preferentially
select cells in the highest level reached so far (Appendix A.5). Doing so encourages exploring new
levels instead of exploring the treasure rooms on previous levels to keep exploiting the treasure room
bug. The highest final scores thus come from trajectories that solved many levels. Because knowing
the level number constitutes domain knowledge, non-domain knowledge runs cannot take advantage
of this information and are thus affected by the bug more.

In terms of computational performance, Phase 1 with domain knowledge solves the first level after
a mean of only 57.6M (CI: 52.7M – 62.3M) game frames, corresponding to 0.9 (CI: 0.8 – 1.0)
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Memory-based Exploration

§ “First return, then explore”1: policy-based Go-Explore
§ Instead of resetting the simulator: learn a goal-conditioned

policy to reach a state
à mainly trained to follow the best trajectory so far

§ Self-Imitation Learning to extract more information from
successful trajectories

§ “Memory based Trajectory-conditioned Policies for Learning from Sparse Rewards”2: 
§ Like policy-based go-explore:

§ Maintain a memory of demonstrations collected during training
§ Use them to train a trajectory-conditioned policy via Self-Imitation Learning

§ Prioritize trajectories that end with a rare state during sampling.
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1 Adrian Ecoffet et al.: First return, then explore. 2021.
2 Yijie Guo et al.: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards. 2021.

Direct Exploration: Go-Explore (Improvements)
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Agenda

§ Motivation, Problem Definition & Multi-Armed Bandits
§ Classic Exploration Strategies

§ Epsilon Greedy
§ (Bayesian) Upper Confidence Bounds
§ Thomson Sampling

§ Exploration in Deep RL
§ Count-based Exploration: Density Models, Hashing
§ Prediction-based Exploration:

§ Forward Dynamics
§ Random Networks

§ Physical Properties
§ Memory-based Exploration:

§ Episodic Memory
§ Direct Exploration

§ Summary and Outlook 
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Exploration in Deep RL

§ We studied different families of algorithms and settings in this lecture:
1. Multi-armed Bandits and their theoretical assumptions
2. Challenges that arise from going from small MDPs to high-dimensional POMDPs
3. We found different families of methods to guide exploration in Deep RL:
§ Count-based Exploration
§ Prediction-based Exploration
§ Memory-based Exploration

§ Exploration is hot topic in current RL research

§ Proving theoretical assumption and bounds from (contextual) bandits on small MDPs, as well as
§ Exploration in Deep RL
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