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Offline Reinforcement Learning
Agenda

§ What is Offline Reinforcement Learning?
§ Challenges of Offline Reinforcement Learning
§ Solution Approaches:

§ Policy Constrained Methods:
§ Batch Constrained Q-Learning (BCQ) 
§ Bootstrapping Error Accumulation Reduction (BEAR) 

§ Conservative Methods: 
§ Conservative Q-Learning (CQL) 
§ Model-based Offline Policy Optimization (MOPO) 
§ Conservative Offline Model-Based Policy Optimization (COMBO)

§ Summary
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Offline Reinforcement Learning 

Why is Deep Learning so successful in real-world applications?

Why is this not the same for Reinforcement Learning?
§ Active data collection can be costly, impossible or unethical

§ Medical treatment,
§ Autonomous driving, …

§ This hinders the application of active reinforcement learning to real world problems 
§ Simulators are hard to design and the resulting observations inferior to real world data 

à Need for data-driven reinforcement learning that uses passively collected real world data
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1 http://vladlen.info/projects/scene-understanding/
2 https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Motivation



Offline Reinforcement Learning 
Online (On-Policy) Reinforcement Learning

§ 𝜋! is updated with streaming data collected by 𝜋! itself
§ The transitions 𝑠, 𝑎, 𝑟, 𝑠" are collected using the current policy 𝜋!
§ Policy and transitions are perfectly related 
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Levine et al.: ”Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems”
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Figure 1: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning (a), the policy ⇡k is updated
with streaming data collected by ⇡k itself. In the classic off-policy setting (b), the agent’s experience is appended
to a data buffer (also called a replay buffer) D, and each new policy ⇡k collects additional data, such that D is
composed of samples from ⇡0,⇡1, . . . ,⇡k, and all of this data is used to train an updated new policy ⇡k+1. In
contrast, offline reinforcement learning employs a dataset D collected by some (potentially unknown) behavior
policy ⇡� . The dataset is collected once, and is not altered during training, which makes it feasible to use large
previous collected datasets. The training process does not interact with the MDP at all, and the policy is only
deployed after being fully trained.

additional online interaction (Kumar, 2019; Fu et al., 2020). See Figure 1 for a pictorial illustration.
A number of recent works have illustrated the power of such an approach in enabling data-driven
learning of policies for dialogue (Jaques et al., 2019), robotic manipulation behaviors (Ebert et al.,
2018; Kalashnikov et al., 2018), and robotic navigation skills (Kahn et al., 2020).

Unfortunately, such data-driven offline reinforcement learning also poses major algorithmic challenges.
As we will discuss in this article, many commonly used reinforcement learning methods can learn
from off-policy data, but such methods often cannot learn effectively from entire offline data, without
any additional on-policy interaction. High-dimensional and expressive function approximation
generally exacerbates this issue, since function approximation leaves the algorithms vulnerable to
distributional shift, one of the central challenges with offline reinforcement learning. However,
the appeal of a fully offline reinforcement learning framework is enormous: in the same way that
supervised machine learning methods have enabled data to be turned into generalizable and powerful
pattern recognizers (e.g., image classifiers, speech recognition engines, etc.), offline reinforcement
learning methods equipped with powerful function approximation may enable data to be turned
into generalizable and powerful decision making engines, effectively allowing anyone with a large
enough dataset to turn this dataset into a policy that can optimize a desired utility criterion. From
healthcare decision-making support to autonomous driving to robotics, the implications of a reliable
and effective offline reinforcement learning method would be immense.

In some application domains, the lack of effective offline reinforcement learning methods has driven
research in a number of interesting directions. For example, in robotics and autonomous driving, a
rapidly growing research topic is the study of simulation to real-world transfer: training policies with
reinforcement learning in simulation and then transferring these policies into the real world (Sadeghi
and Levine, 2017; Tan et al., 2018; Chebotar et al., 2019). While this approach is very pragmatic (and
often effective), its popularity highlights the deficiency in offline reinforcement learning methods: if
it was possible to simply train policies with previously collected data, it would likely be unnecessary
in many cases to manually design high-fidelity simulators for simulation-to-real-world transfer. After
all, outside of reinforcement learning (e.g., in computer vision, NLP, or speech recognition), transfer
from simulation is comparatively much less prevalent, since data-driven learning is so effective.

The goal of this article is to provide the reader with the conceptual tools needed to get started on
research in the field of offline reinforcement learning (also called batch reinforcement learning (Ernst
et al., 2005; Lange et al., 2012)), so as to hopefully begin addressing some of these deficiencies. To
this end, we will present the offline reinforcement learning problem formulation, and describe some
of the challenges associated with this problem setting, particularly in light of recent research on deep
reinforcement learning and the interaction between reinforcement learning and high-dimensional
function approximator, such as deep networks. We will cover a variety of offline reinforcement
learning methods studied in the literature. For each one, we will discuss the conceptual challenges,
and initial steps taken to mitigate these challenges. We will then discuss some of the applications of
offline reinforcement learning techniques that have already been explored, despite the limitations of
current methods, and conclude with some perspectives on future work and open problems in the field.
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Offline Reinforcement Learning 
Off-Policy Reinforcement Learning

§ New transitions 𝑠, 𝑎, 𝑟, 𝑠" are appended to a buffer 𝒟
§ 𝒟	consist of samples collected under the policies 𝜋#, 𝜋$, … , 𝜋! (with, e.g., an 𝜖-greedy sampling)

§ All the data from 𝒟 is used to train an updated policy 𝜋!%$ (i.e., transitions are sampled from 𝒟)
§ Policy and transitions are dependent (strength depends on the size of 𝒟 and 𝜖)
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Figure 1: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning (a), the policy ⇡k is updated
with streaming data collected by ⇡k itself. In the classic off-policy setting (b), the agent’s experience is appended
to a data buffer (also called a replay buffer) D, and each new policy ⇡k collects additional data, such that D is
composed of samples from ⇡0,⇡1, . . . ,⇡k, and all of this data is used to train an updated new policy ⇡k+1. In
contrast, offline reinforcement learning employs a dataset D collected by some (potentially unknown) behavior
policy ⇡� . The dataset is collected once, and is not altered during training, which makes it feasible to use large
previous collected datasets. The training process does not interact with the MDP at all, and the policy is only
deployed after being fully trained.

additional online interaction (Kumar, 2019; Fu et al., 2020). See Figure 1 for a pictorial illustration.
A number of recent works have illustrated the power of such an approach in enabling data-driven
learning of policies for dialogue (Jaques et al., 2019), robotic manipulation behaviors (Ebert et al.,
2018; Kalashnikov et al., 2018), and robotic navigation skills (Kahn et al., 2020).

Unfortunately, such data-driven offline reinforcement learning also poses major algorithmic challenges.
As we will discuss in this article, many commonly used reinforcement learning methods can learn
from off-policy data, but such methods often cannot learn effectively from entire offline data, without
any additional on-policy interaction. High-dimensional and expressive function approximation
generally exacerbates this issue, since function approximation leaves the algorithms vulnerable to
distributional shift, one of the central challenges with offline reinforcement learning. However,
the appeal of a fully offline reinforcement learning framework is enormous: in the same way that
supervised machine learning methods have enabled data to be turned into generalizable and powerful
pattern recognizers (e.g., image classifiers, speech recognition engines, etc.), offline reinforcement
learning methods equipped with powerful function approximation may enable data to be turned
into generalizable and powerful decision making engines, effectively allowing anyone with a large
enough dataset to turn this dataset into a policy that can optimize a desired utility criterion. From
healthcare decision-making support to autonomous driving to robotics, the implications of a reliable
and effective offline reinforcement learning method would be immense.

In some application domains, the lack of effective offline reinforcement learning methods has driven
research in a number of interesting directions. For example, in robotics and autonomous driving, a
rapidly growing research topic is the study of simulation to real-world transfer: training policies with
reinforcement learning in simulation and then transferring these policies into the real world (Sadeghi
and Levine, 2017; Tan et al., 2018; Chebotar et al., 2019). While this approach is very pragmatic (and
often effective), its popularity highlights the deficiency in offline reinforcement learning methods: if
it was possible to simply train policies with previously collected data, it would likely be unnecessary
in many cases to manually design high-fidelity simulators for simulation-to-real-world transfer. After
all, outside of reinforcement learning (e.g., in computer vision, NLP, or speech recognition), transfer
from simulation is comparatively much less prevalent, since data-driven learning is so effective.

The goal of this article is to provide the reader with the conceptual tools needed to get started on
research in the field of offline reinforcement learning (also called batch reinforcement learning (Ernst
et al., 2005; Lange et al., 2012)), so as to hopefully begin addressing some of these deficiencies. To
this end, we will present the offline reinforcement learning problem formulation, and describe some
of the challenges associated with this problem setting, particularly in light of recent research on deep
reinforcement learning and the interaction between reinforcement learning and high-dimensional
function approximator, such as deep networks. We will cover a variety of offline reinforcement
learning methods studied in the literature. For each one, we will discuss the conceptual challenges,
and initial steps taken to mitigate these challenges. We will then discuss some of the applications of
offline reinforcement learning techniques that have already been explored, despite the limitations of
current methods, and conclude with some perspectives on future work and open problems in the field.
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Offline Reinforcement Learning
Fully Offline Reinforcement Learning

§ Offline RL uses a dataset 𝒟 collected by some behavior policy 𝜋&
§ 𝜋& is potentially (or often assumed to be) unknown

§ 𝒟 is collected once and not changed during training
§ Transitions are sampled from 𝒟
§ No interaction with the MDP; Policy is deployed after being fully trained.

§ Policy and transitions are independent 
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Figure 1: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning (a), the policy ⇡k is updated
with streaming data collected by ⇡k itself. In the classic off-policy setting (b), the agent’s experience is appended
to a data buffer (also called a replay buffer) D, and each new policy ⇡k collects additional data, such that D is
composed of samples from ⇡0,⇡1, . . . ,⇡k, and all of this data is used to train an updated new policy ⇡k+1. In
contrast, offline reinforcement learning employs a dataset D collected by some (potentially unknown) behavior
policy ⇡� . The dataset is collected once, and is not altered during training, which makes it feasible to use large
previous collected datasets. The training process does not interact with the MDP at all, and the policy is only
deployed after being fully trained.

additional online interaction (Kumar, 2019; Fu et al., 2020). See Figure 1 for a pictorial illustration.
A number of recent works have illustrated the power of such an approach in enabling data-driven
learning of policies for dialogue (Jaques et al., 2019), robotic manipulation behaviors (Ebert et al.,
2018; Kalashnikov et al., 2018), and robotic navigation skills (Kahn et al., 2020).

Unfortunately, such data-driven offline reinforcement learning also poses major algorithmic challenges.
As we will discuss in this article, many commonly used reinforcement learning methods can learn
from off-policy data, but such methods often cannot learn effectively from entire offline data, without
any additional on-policy interaction. High-dimensional and expressive function approximation
generally exacerbates this issue, since function approximation leaves the algorithms vulnerable to
distributional shift, one of the central challenges with offline reinforcement learning. However,
the appeal of a fully offline reinforcement learning framework is enormous: in the same way that
supervised machine learning methods have enabled data to be turned into generalizable and powerful
pattern recognizers (e.g., image classifiers, speech recognition engines, etc.), offline reinforcement
learning methods equipped with powerful function approximation may enable data to be turned
into generalizable and powerful decision making engines, effectively allowing anyone with a large
enough dataset to turn this dataset into a policy that can optimize a desired utility criterion. From
healthcare decision-making support to autonomous driving to robotics, the implications of a reliable
and effective offline reinforcement learning method would be immense.

In some application domains, the lack of effective offline reinforcement learning methods has driven
research in a number of interesting directions. For example, in robotics and autonomous driving, a
rapidly growing research topic is the study of simulation to real-world transfer: training policies with
reinforcement learning in simulation and then transferring these policies into the real world (Sadeghi
and Levine, 2017; Tan et al., 2018; Chebotar et al., 2019). While this approach is very pragmatic (and
often effective), its popularity highlights the deficiency in offline reinforcement learning methods: if
it was possible to simply train policies with previously collected data, it would likely be unnecessary
in many cases to manually design high-fidelity simulators for simulation-to-real-world transfer. After
all, outside of reinforcement learning (e.g., in computer vision, NLP, or speech recognition), transfer
from simulation is comparatively much less prevalent, since data-driven learning is so effective.

The goal of this article is to provide the reader with the conceptual tools needed to get started on
research in the field of offline reinforcement learning (also called batch reinforcement learning (Ernst
et al., 2005; Lange et al., 2012)), so as to hopefully begin addressing some of these deficiencies. To
this end, we will present the offline reinforcement learning problem formulation, and describe some
of the challenges associated with this problem setting, particularly in light of recent research on deep
reinforcement learning and the interaction between reinforcement learning and high-dimensional
function approximator, such as deep networks. We will cover a variety of offline reinforcement
learning methods studied in the literature. For each one, we will discuss the conceptual challenges,
and initial steps taken to mitigate these challenges. We will then discuss some of the applications of
offline reinforcement learning techniques that have already been explored, despite the limitations of
current methods, and conclude with some perspectives on future work and open problems in the field.
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Offline Reinforcement Learning

Behavioural Cloning

§ Scenario: Data 𝒟 collected from a behavioural agent 𝜋&
§ Goal: Learn policy 𝜋& from 𝒟 with supervised learning

1. Needs expert data to get a good policy
2. Unexpectedly high error bound due to generalization

that usually leads to poor performance in practice

Offline Reinforcement Learning
§ Scenario: Data 𝒟 collected from a behavioural agent 𝜋&
§ Goal: Learn the best possible policy π using only data 𝒟

à Does not necessarily need expert data 
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Levine et al.: Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. 

Offline Reinforcement Learning vs. Behavioural Cloning 



Offline Reinforcement Learning
Agenda

§ What is Offline Reinforcement Learning?
§ Challenges of Offline Reinforcement Learning
§ Solution Approaches:

§ Policy Constrained Methods:
§ Batch Constrained Q-Learning (BCQ) 
§ Bootstrapping Error Accumulation Reduction (BEAR) 

§ Conservative Methods: 
§ Conservative Q-Learning (CQL) 
§ Model-based Offline Policy Optimization (MOPO) 
§ Conservative Offline Model-Based Policy Optimization (COMBO)

§ Summary
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Offline Reinforcement Learning

§ Find the good behaviour in a dataset of good and bad behaviour 
§ Generalize to similar states and actions 
§ Stich together good and bad behaviour 
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https://bair.berkeley.edu/blog/2020/06/25/D4RL/

D4RL:AntMaze

https://sites.google.com/view/d4rl/

Why Offline RL Should Work in Principle 



Offline Reinforcement Learning
Challenges of Offline Reinforcement Learning 

Question
§ Can we just use off-policy methods to learn from static datasets?

Experimental Setup
§ Train Soft Actor-Critic (SAC) in a fully off-policy setting
§ Environment: Mujoco’s HalfCheetah-v2
§ Use a trained policy to generate expert demonstrations

§ Dataset contains successful task completions
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https://bair.berkeley.edu/blog/2019/12/05/bear/



Offline Reinforcement Learning
Off-Policy Algorithms for Offline RL?

Question
§ Can we just use off-policy methods to learn from static datasets? No!

Experimental results 
§ n = size of dataset
§ None of the runs succeeds
§ Evaluation performance deteriorates with more training

(green vs. blue/orange)
§ but cannot be the main reason (see red curve)

§ Q-values even diverge for some datasets

à Then why does it fail? 
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https://bair.berkeley.edu/blog/2019/12/05/bear/



Offline Reinforcement Learning
Recap: Generalized Policy Iteration (GPI)
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Offline Reinforcement Learning

Policy Evaluation: For a given policy 𝝅, find 𝑸

§ The true state-action-value function satisfies the Bellman Equation:

Q 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼 𝑄(𝑠′, 𝜋 𝑠" ) = 𝑇'𝑄 𝑠, 𝑎

§ Approximate dynamic programming is used to minimize the Mean Squared Bellman Error:

min
(
𝔼) ~ +!, - ~ ' 𝑄( 𝑠, 𝑎 − 𝑇'𝑄( 𝑠, 𝑎

.

Policy Improvement: For a given value function 𝑸 for 𝝅, find a better policy 𝝅𝒏𝒆𝒘

𝜋234 𝑠 = arg max- 𝑄 𝑠, 𝑎

Policy Improvement Theorem:

§ Let 𝜋	and 𝜋′ be two policies with ∀ 𝑠 ∈ 𝑆: 𝑄' 𝑠, 𝜋′ 𝑠 ≥ 𝑉'(𝑠), then	∀ 𝑠 ∈ 𝑆: 𝑉'" 𝑠 ≥ 𝑉'(𝑠)
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Recap: Generalized Policy Iteration (GPI)



Offline Reinforcement Learning
GPI in the Offline Setting 
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Offline Reinforcement Learning

§ What we want to do:

min
!
𝔼"~$5, &~' 𝑟(𝑠, 𝑎) + 𝛾𝔼)"~6()"|),-), -"~'()") 𝑄((𝑠′, 𝑎

") − 𝑄( 𝑠, 𝑎
'

§ What we would be doing naively:

min
(

-
"∈),&∈*

E
),-,:,)" ∈𝒟|$,&

𝑟 + 𝛾𝑄( 𝑠", 𝜋 𝑠" − 𝑄( 𝑠, 𝑎
.

§ Which is the empirical approximation for:

min
!
𝔼"~$5= , &~'' 𝑟 + 𝛾𝔼)"~6()"|),-"),-"~'()") 𝑄((𝑠′, 𝑎

") − 𝑄( 𝑠, 𝑎
'

àState and action distribution shift (the next action can be controlled)

15

Offline Policy Evaluation and Distribution Shift 



Offline Reinforcement Learning
Offline Policy Evaluation and Distribution Shift 

§ The problem: 𝑃>3)> ≠ 𝑃>:-?2
§ Problematic in many domains: 

§ How well does my model extrapolate
§ Adversarial examples

§ In RL we have no ground-truth
§ bootstrapping the target makes the situation even worse
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https://xkcd.com/605/

https://stats.stackexchange.com/questions/219579/what-is-wrong-with-extrapolation



Offline Reinforcement Learning
Offline Policy Evaluation and Distribution Shift 

What we want to do: 

𝔼"~$5, &~' 𝑟 + 𝛾𝔼)"~6()"|),-), -"~'()") 𝑄((𝑠′, 𝑎
") − 𝑄( 𝑠, 𝑎

'

What we would naively do: 

𝔼"~$5= , &~+= 𝑟 + 𝛾𝔼)"~6()"|),-), -"~'()") 𝑄((𝑠′, 𝑎
") − 𝑄( 𝑠, 𝑎

'

§ State distribution shift:
§ Problem arises during test time 
§ Does not invalidate the learned strategy on the states in 𝒟 because unobserved states are never queried during training

§ Action distribution shift: 
§ Already problematic during training as inaccurate action values are used as bootstrapped targets
§ Can invalidate the learned strategy even on states in 𝒟
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Offline Reinforcement Learning
Bootstrapping Out of Distribution Actions 

§ We can view policy evaluation as a regression problem with a bootstrapped target: 𝑦 = 𝑟 + 𝛾𝑄((𝑠′, 𝜋 𝑠" )

§ The objective is a (variant of) the mean squared error: 𝑦 − 𝑄( 𝑠, 𝑎
.

§ Due to distribution shift the bootstrapped 𝑦 can be inaccurate as 𝜋(𝑠") might be an out of distribution action
§ Errors are propagated through the state space and can potentially pollute everything 
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Offline Reinforcement Learning
Importance Sampling 

§ A classical method for off-policy training is importance sampling

§ Define the importance ratio

𝜌(𝑠, 𝑎) =
𝜋 𝑎 𝑠 ×𝑑'(𝑠)
𝜋& 𝑎 𝑠 ×𝑑''())

§ Adjust the policy evaluation objective

∑"∈),&∈* 𝜌 𝑠, 𝑎 ∑ ),-,:,)" ∈𝒟|$,& 𝑟 + 𝛾𝑄( 𝑠", 𝜋 𝑠" − 𝑄( 𝑠, 𝑎
.

§ This has the actual loss in expectation

𝔼" ~ $5, & ~' 𝑟 + 𝛾𝔼)"~6()"|),-),-"~'()") 𝑄((𝑠′, 𝑎
") − 𝑄( 𝑠, 𝑎

'
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Offline Reinforcement Learning
Importance Sampling 

§ The adjusted objective becomes

-
"∈),&∈*

E
),-,:,)" ∈𝒟|$,&

𝜋 𝑎 𝑠 ×𝑑' 𝑠

𝜋& 𝑎 𝑠 ×𝑑'' )
(𝑟 + 𝛾𝑄((𝑠′, 𝜋 𝑠" ) − 𝑄( 𝑠, 𝑎 )

.

§ 𝑎 ∈ 𝐴 with 𝜋& 𝑎 𝑠 ≈ 0 is an out of distribution action

§ Consider 𝜋& 𝑎 𝑠 = 0 and 𝜋 𝑎 𝑠 > 0

Shortcomings
§ Importance sampling induces high variance if the importance ratios are large 
§ The importance ratio is large if 𝜋 and 𝜋& differ strongly 

§ Density estimation in high-dimensional states is notoriously difficult
§ There are methods that use importance sampling

(see e.g. Off-Policy Policy Gradient with State Distribution Correction by Liu et al. (2019))
§ In many cases we do not know 𝜋&!
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Offline Reinforcement Learning
Offline RL and Policy Improvement 
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Offline Reinforcement Learning
Policy Improvement and Bootstrapping

§ We can view policy evaluation as a regression problem with a bootstrapped target: 𝑦 = 𝑟 + 𝛾𝑄((𝑠′, 𝜋 𝑠" )

§ The objective is a (variant of) the mean squared error: 𝑦 − 𝑄( 𝑠, 𝑎
.

§ The maximizing action is bootstrapped 
§ This potentially draws the policy to out of distribution actions with large positive extrapolation error
§ The importance ratio 𝜌(𝑠, 𝑎) becomes worse 
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https://bair.berkeley.edu/blog/2019/12/05/bear/



Offline Reinforcement Learning
Extrapolation Error in Active Reinforcement Learning

§ In active reinforcement learning data is e.g. sampled using 𝜖-greedy strategies: 
§ Feedback for (potentially overestimated) actions is collected 
§ Overestimated Q-values are going to be corrected downwards
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Offline Reinforcement Learning
GPI in the Offline Setting 
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Offline Reinforcement Learning

§ We want to improve upon the behaviour policy

à 𝜋 should differ from 𝜋&

§ We want to be able to evaluate 𝜋 using data from 𝜋&
à 𝜋 should be similar to 𝜋&

à A tricky trade-off! 
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The Dilemma



Offline Reinforcement Learning

§ The main challenges in Offline Reinforcement Learning arise because of the Deadly Triad:

§ Bootstrapping 
§ Needed for efficient learning

§ Function Approximation 
§ Needed for generalization 

§ Distribution Shift 
§ A result of off-policy learning

26

The Deadly Triad



Offline Reinforcement Learning
Agenda

§ What is Offline Reinforcement Learning?
§ Challenges of Offline Reinforcement Learning
§ Solution Approaches:

§ Policy-constrained Methods:
§ Batch-constrained Q-Learning (BCQ) 
§ Bootstrapping Error Accumulation Reduction (BEAR) 

§ Conservative Methods: 
§ Conservative Q-Learning (CQL) 
§ Model-based Offline Policy Optimization (MOPO) 
§ Conservative Offline Model-Based Policy Optimization (COMBO)

§ Summary
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Offline Reinforcement Learning
Solution Approaches  

Policy-constrained Methods:

§ Tackle the problem in the policy improvement step by keeping 𝜋 close to 𝜋& using distance 𝑑(𝜋, 𝜋&)
§ What to use as 𝑑?

§ Match the distributions: Batch-constrained Q-Learning (BCQ)
§ Match the support: Bootstrapping Error Accumulation Reduction (BEAR)

Conservative Methods:
§ Tackle the problem in the policy evaluation step by being conservative in areas of high uncertainty 

§ Learn a lower bound for the true Q-Function: Conservative Q-Learning (CQL)

§ Learn a model with a pessimistic reward function: Model-based Offline Policy Optimization (MOPO)
§ Learn a lower bound for the true Q-Function and use additional data from a model:

Conservative Offline Model-Based Policy Optimization (COMBO) 
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Offline Reinforcement Learning
Policy-Constrained Methods

§ What is Offline Reinforcement Learning?
§ Challenges of Offline Reinforcement Learning
§ Solution Approaches:

§ Policy-constrained Methods:
§ Batch-constrained Q-Learning (BCQ) 
§ Bootstrapping Error Accumulation Reduction (BEAR) 

§ Conservative Methods: 
§ Conservative Q-Learning (CQL) 
§ Model-based Offline Policy Optimization (MOPO) 
§ Conservative Offline Model-Based Policy Optimization (COMBO)

§ Summary
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Offline Reinforcement Learning
Policy-Constrained Methods

§ The problems arise because the maximizing action is selected without uncertainty considerations

𝜋234 𝑠 = arg max- 𝑄( 𝑠, 𝑎

§ Define the admissible set of policies Π@ = 𝜋 𝑑 𝜋, 𝜋& ≤ 𝜖) where 𝑑 is a distance measure 

§ Consider a constrained policy improvement step

𝜋234 = arg max'∈A( 𝔼[𝑄( 𝑠, 𝜋(𝑠) ]
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Policy-Constrained Offline RL
Batch-Constrained Q-Learning (BCQ)

§ Batch-Constrained Q-Learning1 was originally introduced 2019
§ General idea:

§ Restrict the action space in order to force the agent towards behaving close to on-policy with respect to the subset of 
the given data

§ Assumption: if bootstrapped actions are close, then the extrapolation error will be low

§ The algorithm will be explained in three steps: 
1. Theoretical BCQ in the tabular case
2. BCQ with function approximation in the discrete case
3. BCQ with function approximation in the continuous case
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1 Fujimoto et a.: Off Policy Deep Reinforcement Learning without Exploration. ICML. 2019.



Policy-Constrained Offline RL
BCQ – Deterministic Tabular Case 

Finite, Deterministic MDP 
§ Actions: up, down
§ Tabular Q-Function
§ Rewards are neglected for simplicity

32
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Policy-Constrained Offline RL
BCQ – Deterministic Tabular Case 

Finite, Deterministic MDP 
§ Actions: up, down
§ Tabular Q-Function
§ Rewards are neglected for simplicity

§ Orange numbers are the observed transition counts 𝑡?
§ 𝒟 consists of the transitions, where 𝑡? > 0
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Policy-Constrained Offline RL
BCQ – Deterministic Tabular Case 

Finite, Deterministic MDP 
§ Actions: up, down
§ Tabular Q-Function
§ Rewards are neglected for simplicity

§ Estimate the restricted MDP
§ Solve the restricted MDP (e.g., using Q-Learning)
§ All policies that stay lie in the restricted MDP can

be accurately assessed because of the determinism
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Policy-Constrained Offline RL
BCQ – Stochastic Tabular Case 

Finite, Stochastic MDP 
§ Actions: up, down
§ Tabular Q-Function
§ Rewards are neglected for simplicity
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Policy-Constrained Offline RL
BCQ – Stochastic Tabular Case 

Finite, Stochastic MDP 
§ Actions: up, down
§ Tabular Q-Function
§ Rewards are neglected for simplicity

§ Orange numbers are the observed transition counts 𝑡?
§ 𝒟 consists of the transitions, where 𝑡? > 0
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Policy-Constrained Offline RL
BCQ – Stochastic Tabular Case 

Finite, Stochastic MDP 
§ Actions: up, down
§ Tabular Q-Function
§ Rewards are neglected for simplicity

§ Estimate the restricted MDP
§ Solve the estimated MDP (e.g., using Q-Learning)
§ Quality of the learned policy depends on the

quality of the estimation

§ When deploying the policy, the agent might
be swept into the unknown!
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Policy-Constrained Offline RL
BCQ with Function Approximation – Discrete Case

§ Q-Learning:

min
(
(𝑟 + 𝛾 max

-"∈B()")
𝑄( 𝑠", 𝑎" − 𝑄((𝑠, 𝑎)).

§ Let us define

𝐴@
CDE 𝑠 = 𝑎 ∈ 𝐴 𝑠 :

V𝜋& 𝑎 𝑠
max
-

V𝜋& 𝑎 𝑠
≥ 𝜖 ,

where 𝜖 ∈ [0,1] is the threshold parameter and V𝜋& an estimate for the behaviour policy

§ The constrained target is 𝑦 = 𝑟 + 𝛾 ⋅ max
-"∈B(

)*+()")
𝑄 𝑠", 𝑎′

§ 𝜖 = 1à behavioural cloning
§ 𝜖 = 0à Q-Learning

§ The learned policy is 𝜋 𝑠 = arg	max
-∈B(

)*+()")
𝑄 𝑠, 𝑎
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Policy-Constrained Offline RL
BCQ with Function Approximation – Continuous Case

§ Problem:

§ Computing the restriction 
F'' 𝑎 𝑠

GHI
&

F'' 𝑎 𝑠 > 𝜖 is not so straightforward in the continuous case

§ BCQ addresses this using three counter-measures:

§ A Conditional Variational Autoencoder V𝜋& ⋅ 𝑠 is used to sample actions

§ Additionally, a perturbation model improves the sampled actions 𝑎? ~ V𝜋& ⋅ 𝑠 in a neighbourhood

§ (Soft) Clipped Double Q-Learning1 fights overestimation in continuous action spaces
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1 Fujimoto et al.: Addressing Function Approximation Error in Actor-Critic Methods. ICML. 2018.



Policy-Constrained Offline RL
BCQ – Sampling from the Behaviour Policy

§ Goal: Sample from the behavioural policy 𝜋&(⋅ |𝑠)
§ Problem: 𝜋&(⋅ |𝑠) is unknown and difficult to sample from  

§ Solution: Conditional Variational Autoencoder

§ Generate samples from a trained VAE: 
1. Sample 𝑧? from the latent space (encoder is not used) 
2. Decode 𝑎?" = 𝑑𝑒𝑐(𝑧?, 𝑠)
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Policy-Constrained Offline RL
BCQ – Perturbation Model 

§ Situation: In state 𝑠" we have obtained sampled actions 𝑎?" from V𝜋&(⋅ |𝑠")
§ Problem: Finding a good action requires many samples
§ Solution: 

§ Train an additional perturbation model 𝜉 that improves the Q-value of 𝑎? in a neighbourhood 
§ The goal is 𝜉J 𝑠, 𝑎,Φ = arg maxK∈[MN, N]𝑄(𝑠, 𝑎 + 𝑣)

§ Φ = 0 à Behavioural cloning
§ Φ = ∞à Q-Learning

§ It is trained with the DDPG algorithm
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Policy-Constrained Offline RL
BCQ – Soft Clipped Double Q-Learning

• Situation: In state 𝑠 we have perturbed actions 𝑎?" from V𝜋&(⋅ |𝑠) resulting in 𝑎?∗ = 𝜉(𝑠, 𝑎?, Φ)
• Problem: Vanilla Double Q-Learning can be ineffective when the networks are too similar

à Overestimation of Q-values 
• Solution:

• Use a convex combination of the minimum and the maximum 

𝑦 = max-"Q-,∗ ,…,-.∗ 𝜆 ⋅ min?𝑄E/0"
𝑠", 𝑎" + 1 − 𝜆 ⋅ max?𝑄(0"(𝑠

", 𝑎′)

• When 𝜆 ∈ [0,1] is large this penalizes uncertain regions 
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Policy-Constrained Offline RL
Continuous BCQ – Algorithm 
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Off-Policy Deep Reinforcement Learning without Exploration

sible candidate actions with high similarity to the batch,
and then selects the highest valued action through a learned
Q-network. Furthermore, we bias this value estimate to
penalize rare, or unseen, states through a modification to
Clipped Double Q-learning (Fujimoto et al., 2018). As a
result, BCQ learns a policy with a similar state-action visi-
tation to the data in the batch, as inspired by the theoretical
benefits of its tabular counterpart.

To maintain the notion of batch-constraint, we define a sim-
ilarity metric by making the assumption that for a given
state s, the similarity between (s, a) and the state-action
pairs in the batch B can be modelled using a learned state-
conditioned marginal likelihood PG

B (a|s). In this case, it
follows that the policy maximizing PG

B (a|s) would min-
imize the error induced by extrapolation from distant, or
unseen, state-action pairs, by only selecting the most likely
actions in the batch with respect to a given state. Given
the difficulty of estimating PG

B (a|s) in high-dimensional
continuous spaces, we instead train a parametric generative
model of the batch G!(s), which we can sample actions
from, as a reasonable approximation to argmaxa P

G
B (a|s).

For our generative model we use a conditional variational
auto-encoder (VAE) (Kingma & Welling, 2013; Sohn et al.,
2015), which models the distribution by transforming an un-
derlying latent space1. The generative model G! , alongside
the value function Q✓, can be used as a policy by sampling n
actions from G! and selecting the highest valued action ac-
cording to the value estimate Q✓. To increase the diversity of
seen actions, we introduce a perturbation model ⇠�(s, a,�),
which outputs an adjustment to an action a in the range
[��,�]. This enables access to actions in a constrained
region, without having to sample from the generative model
a prohibitive number of times. This results in the policy ⇡:

⇡(s) = argmax
ai+⇠�(s,ai,�)

Q✓(s, ai + ⇠�(s, ai,�)),

{ai ⇠ G!(s)}ni=1.
(11)

The choice of n and � creates a trade-off between an im-
itation learning and reinforcement learning algorithm. If
� = 0, and the number of sampled actions n = 1, then the
policy resembles behavioral cloning and as �! amax�amin
and n!1, then the algorithm approaches Q-learning, as
the policy begins to greedily maximize the value function
over the entire action space.

The perturbation model ⇠� can be trained to maximize
Q✓(s, a) through the deterministic policy gradient algorithm
(Silver et al., 2014) by sampling a ⇠ G!(s):

� argmax
�

X

(s,a)2B

Q✓(s, a+ ⇠�(s, a,�)). (12)

To penalize uncertainty over future states, we modify
1See the Supplementary Material for an introduction to VAEs.

Algorithm 1 BCQ
Input: Batch B, horizon T , target network update rate
⌧ , mini-batch size N , max perturbation �, number of
sampled actions n, minimum weighting �.
Initialize Q-networks Q✓1 , Q✓2 , perturbation network ⇠�,
and VAE G! = {E!1 , D!2}, with random parameters ✓1,
✓2, �, !, and target networks Q✓0

1
, Q✓0

2
, ⇠�0 with ✓01  

✓1, ✓02  ✓2, �0  �.
for t = 1 to T do

Sample mini-batch of N transitions (s, a, r, s0) from B
µ,� = E!1(s, a), ã = D!2(s, z), z ⇠ N (µ,�)
!  argmin!

P
(a� ã)2 +DKL(N (µ,�)||N (0, 1))

Sample n actions: {ai ⇠ G!(s0)}ni=1

Perturb each action: {ai = ai + ⇠�(s0, ai,�)}ni=1

Set value target y (Eqn. 13)
✓  argmin✓

P
(y �Q✓(s, a))2

� argmax�
P

Q✓1(s, a+ ⇠�(s, a,�)), a ⇠ G!(s)
Update target networks: ✓0i  ⌧✓ + (1� ⌧)✓0i
�0  ⌧�+ (1� ⌧)�0

end for

Clipped Double Q-learning (Fujimoto et al., 2018), which
estimates the value by taking the minimum between two Q-
networks {Q✓1 , Q✓2}. Although originally used as a coun-
termeasure to overestimation bias (Thrun & Schwartz, 1993;
Van Hasselt, 2010), the minimum operator also penalizes
high variance estimates in regions of uncertainty, and pushes
the policy to favor actions which lead to states contained in
the batch. In particular, we take a convex combination of
the two values, with a higher weight on the minimum, to
form a learning target which is used by both Q-networks:

r+�max
ai


� min

j=1,2
Q✓0

j
(s0, ai) + (1� �) max

j=1,2
Q✓0

j
(s0, ai)

�

(13)
where ai corresponds to the perturbed actions, sampled
from the generative model. If we set � = 1, this update
corresponds to Clipped Double Q-learning. We use this
weighted minimum as the constrained updates produces less
overestimation bias than a purely greedy policy update, and
enables control over how heavily uncertainty at future time
steps is penalized through the choice of �.

This forms Batch-Constrained deep Q-learning (BCQ),
which maintains four parametrized networks: a generative
model G!(s), a perturbation model ⇠�(s, a), and two Q-
networks Q✓1(s, a), Q✓2(s, a). We summarize BCQ in Al-
gorithm 1. In the following section, we demonstrate BCQ
results in stable value learning and a strong performance in
the batch setting. Furthermore, we find that only a single
choice of hyper-parameters is necessary for a wide range of
tasks and environments.

train CVAE

sample from CVAE and perturb

clipped target
train Q

train perturbation

update targets



Policy-Constrained Offline RL
Continuous BCQ – Results
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(a) Final buffer performance

(b) Concurrent performance

(c) Imitation performance

(d) Imperfect demonstrations performance

Figure 2. We evaluate BCQ and several baselines on the experi-
ments from Section 3.1, as well as the imperfect demonstrations
task. The shaded area represents half a standard deviation. The
bold black line measures the average return of episodes contained
in the batch. Only BCQ matches or outperforms the performance
of the behavioral policy in all tasks.

5. Experiments

To evaluate the effectiveness of Batch-Constrained deep
Q-learning (BCQ) in a high-dimensional setting, we focus
on MuJoCo environments in OpenAI gym (Todorov et al.,
2012; Brockman et al., 2016). For reproducibility, we make
no modifications to the original environments or reward
functions. We compare our method with DDPG (Lillicrap
et al., 2015), DQN (Mnih et al., 2015) using an indepen-
dently discretized action space, a feed-forward behavioral
cloning method (BC), and a variant with a VAE (VAE-BC),
using G!(s) from BCQ. Exact implementation and experi-
mental details are provided in the Supplementary Material.

We evaluate each method following the three experiments
defined in Section 3.1. In final buffer the off-policy agents

(a) Final Buffer (b) Concurrent (c) Imitation

Figure 3. We examine the value estimates of BCQ, along with
DDPG and DQN on the experiments from Section 3.1 in the
Hopper-v1 environment. Each individual trial is plotted, with
the mean in bold. An estimate of the true value of BCQ, evaluated
by Monte Carlo returns, is marked by a dotted line. Unlike the state
of the art baselines, BCQ exhibits a highly stable value function
in each task. Graphs for the other environments and imperfect
demonstrations task can be found in the Supplementary Material.

learn from the final replay buffer gathered by training a
DDPG agent over a million time steps. In concurrent the
off-policy agents learn concurrently, with the same replay
buffer, as the behavioral DDPG policy, and in imitation, the
agents learn from a dataset collected by an expert policy.
Additionally, to study the robustness of BCQ to noisy and
multi-modal data, we include an imperfect demonstrations
task, in which the agents are trained with a batch of 100k
transitions collected by an expert policy, with two sources of
noise. The behavioral policy selects actions randomly with
probability 0.3 and with high exploratory noise N (0, 0.3)
added to the remaining actions. The experimental results
for these tasks are reported in Figure 2. Furthermore, the
estimated values of BCQ, DDPG and DQN, and the true
value of BCQ are displayed in Figure 3.

Our approach, BCQ, is the only algorithm which succeeds
at all tasks, matching or outperforming the behavioral policy
in each instance, and outperforming all other agents, besides
in the imitation learning task where behavioral cloning un-
surprisingly performs the best. These results demonstrate
that our algorithm can be used as a single approach for both
imitation learning and off-policy reinforcement learning,
with a single set of fixed hyper-parameters. Furthermore,
unlike the deep reinforcement learning algorithms, DDPG
and DQN, BCQ exhibits a highly stable value function in
the presence of off-policy samples, suggesting extrapolation
error has been successfully mitigated through the batch-
constraint. In the imperfect demonstrations task, we find
that both deep reinforcement learning and imitation learn-
ing algorithms perform poorly. BCQ, however, is able to
strongly outperform the noisy demonstrator, disentangling
poor and expert actions. Furthermore, compared to current
deep reinforcement learning algorithms, which can require
millions of time steps (Duan et al., 2016; Henderson et al.,
2017), BCQ attains a high performance in remarkably few
iterations. This suggests our approach effectively leverages
expert transitions, even in the presence of noise.



Offline Reinforcement Learning
Policy-Constrained Methods

§ What is Offline Reinforcement Learning?
§ Challenges of Offline Reinforcement Learning
§ Solution Approaches:

§ Policy Constrained Methods:
§ Batch Constrained Q-Learning (BCQ) 
§ Bootstrapping Error Accumulation Reduction (BEAR) 

§ Conservative Methods: 
§ Conservative Q-Learning (CQL) 
§ Model-based Offline Policy Optimization (MOPO) 
§ Conservative Offline Model-Based Policy Optimization (COMBO)

§ Summary
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Policy-Constrained Offline RL
Bootstrapping Error Accumulation Reduction (BEAR)

General motivation of BEAR1:
§ The constraint in BCQ is overly restrictive:

If the behaviour policy is uniform, the learned policy must also be close to uniform!

§ Only require that 𝜋 lies in the support of 𝜋&: 𝜋 𝑎 𝑠 > 0 ⇒ 𝜋& 𝑎 𝑠 > 𝜖
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1 Kumar et al.: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurIPS 2019.

https://bair.berkeley.edu/blog/2019/12/05/bear/



Policy-Constrained Offline RL
Bootstrapping Error Accumulation Reduction (BEAR)

Example:
§ 1-dimensional grid-world, two actions: left & right
§ The agent starts in S and its goal is to reach G

§ The behavior policy is used to generate our dataset
§ Right side: sub-optimal actions are more likely (90%),

but both actions are in-distribution at all the states
§ Left side: only the left action is used

47

https://bair.berkeley.edu/blog/2019/12/05/bear/

Behavior Policy

1D-Lineworld Environment



Policy-Constrained Offline RL
Bootstrapping Error Accumulation Reduction (BEAR)

Example:
§ Distribution-matching constraint can be arbitrarily sub-optimal
§ Chances of reaching the goal become very small
§ With bigger grid-worlds the chances approach 0

Why does distribution-matching fail here?
§ Assume we use a penalty for distribution-matching
§ If penalty tight: agent goes left between S and G

à suboptimal behavior
§ If penalty is generous (in hope for getting a better policy): agent will start

to take OOD actions to left of S
à affects Q-value of S
à maybe the policy will even go left when being in S!
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Learned Policy via distribution-matching

https://bair.berkeley.edu/blog/2019/12/05/bear/



Policy-Constrained Offline RL
Bootstrapping Error Accumulation Reduction (BEAR)

Example:
§ Distribution-matching constraint can be arbitrarily sub-optimal
§ Chances of reaching the goal become very small
§ With bigger grid-worlds the chances approach 0

§ In contrast, a support-constraint can recover the optimal
policy with probability 1!

49

Learned Policy via distribution-matching

Learned Policy via support-constraint

https://bair.berkeley.edu/blog/2019/12/05/bear/



Policy-Constrained Offline RL
Bootstrapping Error Accumulation Reduction (BEAR)

§ Q-Learning

§ Objective: min
(
(𝑟 + 𝛾 max

-"∈B()")
𝑄( 𝑠", 𝑎" − 𝑄((𝑠, 𝑎)) .

§ Policy: 𝜋 𝑠 = argmaxH∈B())𝑄((𝑠, 𝑎)

§ BEAR

§ Policy constraint: 𝐴@CSBT 𝑠 = 𝑎 ∈ 𝐴 𝑠 : V𝜋& 𝑎 𝑠 ≥ 𝜖

§ Objective: 𝑟 + 𝛾 ⋅ max
-"∈B()123 )"

𝑄( 𝑠", 𝑎" − 𝑄( 𝑠, 𝑎
.

§ Policy: 𝜋 𝑠 = argmax
-∈B()123 )

𝑄((𝑠, 𝑎)
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Remember: 𝐴!
"#$ 𝑠 = 𝑎 ∈ 𝐴 𝑠 :

%&! 𝑎 𝑠
'()
"

%&! 𝑎 𝑠 ≥ 𝜖 ,



Policy-Constrained Offline RL

§ Goal:

§ get max
-"∈B()123()")

𝑄 𝑠", 𝑎′ in a continuous action space 

§ Approach:
§ Train an actor 𝜋J that satisfies 𝜋J 𝑎 𝑠 > 0 ⇒ 𝜋& 𝑎 𝑠 ≥ 𝜖
§ Optimization problem:

max
J

𝑄 𝑠, 𝜋J(𝑠) 𝑠. 𝑡. 𝜋J 𝑎 𝑠 > 0 ⇒ 𝜋&(𝑎|𝑠) > 𝜖
 

à This requires a distance metric 𝑑(𝜋, 𝜋&) that measures the violation of the support constraint

§ Solution in BEAR:

§ This constraint is implemented via Maximum Mean Discrepancy MMD(𝜋J, 𝜋&)
§ This turns the policy improvement step into a constrained optimization problem:

max
J

𝑄( 𝑠, 𝜋J 𝑠 𝑠. 𝑡. MMD. 𝜋J, 𝜋& < 𝐶(𝜖)
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BEAR – Support Constraint 



only for referencePolicy-Constrained Offline RL
Parenthesis: Maximum Mean Discrepancy 

§ Goal: Measure the distance between distributions 𝑄 and 𝑃
§ Let 𝑋 ~ 𝑃 and 𝑌 ~ 𝑄

§ Idea of MMD: 
1. Map 𝑋 and 𝑌 into a Hilbert space space (𝐻, ⟨⋅⟩) using a feature map Φ
2. Calculate difference between their expectations in 𝐻:

||𝐸\ ~ ] Φ 𝑋 − 𝐸^ ~E Φ 𝑌 ||
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𝑋~𝑃

𝑌~𝑄

Φ~𝑃

Φ~𝑄

Φ ||𝐸* ~ , Φ 𝑋 − 𝐸- ~ . Φ 𝑌 ||



only for referencePolicy-Constrained Offline RL
Parenthesis: Maximum Mean Discrepancy 

§ Goal: Measure the distance between distributions 𝑄 and 𝑃
§ Let 𝑋 ~ 𝑃 and 𝑌 ~ 𝑄

§ Kernel trick: For certain feature maps Φ it holds that Φ 𝑥 ,Φ 𝑦 = 𝑘(𝑥, 𝑦)
§ Here 𝑘 is a RBF kernel (e.g. the Gaussian kernel)
§ In these cases it holds that1

||𝔼\ ~ ] Φ 𝑋 − 𝔼^ ~E Φ 𝑌 || = 𝔼\,\"~] 𝑘 𝑋, 𝑋" + 𝔼^,^"~E 𝑘 𝑌, 𝑌" + 2𝔼\~],^~E[𝑘 𝑋, 𝑌 ]
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1 Tolstikhin et al.: Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels. NIPS. 2016.



only for referencePolicy-Constrained Offline RL

§ Goal: Measure the distance between distributions 𝑄 and 𝑃
§ Let 𝑋 ~ 𝑃 and 𝑌 ~ 𝑄

§ Estimate MMD. 𝜋J, 𝜋& from samples 𝑎$
J, … , 𝑎2

J~𝜋J 𝑠 and 𝑎$
&, … , 𝑎_

&~V𝜋&(𝑠):

1
𝑛.∑?,?

"𝑘 𝑎?
J, 𝑎?"

J −
2
𝑛𝑚∑?,` 𝑘 𝑎?

J, 𝑎& +
1
𝑚.∑`,`"𝑘 𝑎&, 𝑎 "

&

§ For 𝑘 they use the Gaussian kernel:

§ Empirically, this sample-estimated distance matches the support in the low-intermediate sample regime1
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https://bair.berkeley.edu/blog/2019/12/05/bear/
1 Kumar et al.: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurIPS 2019.

Parenthesis: Maximum Mean Discrepancy 



only for referencePolicy-Constrained Offline RL

§ Objective for the actor: 

max
J

𝑄( 𝑠, 𝜙 𝑠 𝑠. 𝑡. 𝑀𝑀𝐷. 𝐴J, 𝐴& ≤ 𝜖

§ This is a constrained optimization problem 
§ Many algorithms exist to solve this, e.g., penalty and barrier methods
§ BEAR uses Dual Gradient Descent
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Dual Gradient Descent 
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§ Optimization problem (for equality constraints):

max
a

𝑓 𝑥 𝑠. 𝑡. 𝐶 𝑥 = 0

§ Lagrangian:

𝐿(𝑥, 𝜆) = 𝑓 𝑥 + 𝜆𝐶(𝑥)

§ The dual gradient descent algorithm solves the dual problem instead of the original (primal) problem 

§ The dual problem is: max
a

min
b
𝐿(𝑥, 𝜆)

§ Define 𝑔 𝜆 = 𝐿 𝑥∗ 𝜆 , 𝜆 , where 𝑥∗ 𝜆 = argmax
a
𝐿 𝑥, 𝜆

§ Algorithm
1. Find 𝑥∗ ← arg maxa 𝐿(𝑥, 𝜆)

2. Compute +c+b =
+d
+b (𝑥

∗, 𝜆)

3. 𝜆 ← 𝜆 + 𝛽 +c
+b

56 see also https://jonathan-hui.medium.com/rl-dual-gradient-descent-fac524c1f049

Dual Gradient Descent in a Nutshell 
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BEAR – Algorithm  
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Policy-Constrained Offline RL
BEAR – Results  
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Policy-Constrained Offline RL
BEAR – Results  
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Offline Reinforcement Learning
Conservative Methods

§ What is Offline Reinforcement Learning?
§ Challenges of Offline Reinforcement Learning
§ Solution Approaches:

§ Policy-constrained Methods:
§ Batch-constrained Q-Learning (BCQ) 
§ Bootstrapping Error Accumulation Reduction (BEAR) 

§ Conservative Methods: 
§ Conservative Q-Learning (CQL) 
§ Model-based Offline Policy Optimization (MOPO) 
§ Conservative Offline Model-Based Policy Optimization (COMBO)

§ Summary
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Conservative Offline RL
BCQ and BEAR – Uncertainty Perspective 

§ Different areas of the Q-Function are associated with different degrees of (un-)certainty
§ BEAR and BCQ address the uncertainty by restricting the policy to certain areas where we think we are certain

How else could we address uncertainty? 
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https://bair.berkeley.edu/blog/2020/12/07/offline/



Conservative Offline RL
Conservative Q-Learning

Idea of CQL1:
§ Instead of constraining the action set for bootstrapping,…
§ ...be conservative in the estimation of state-action-values

that are not in the dataset!

§ Tackles the problem in the policy evaluation 
by staying conservative in uncertain areas 

§ Implicitly keeps the policy away from out of
distribution actions 

à Learn a value function such that the estimated performance of the
policy under this learned value function lower-bounds its true value!
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https://bair.berkeley.edu/blog/2020/12/07/offline/
1 Aviral Kumar et al.: Conservative Q-Learning for Offline Reinforcement Learning. NeurIPS. 2020.



Conservative Offline RL
Conservative Evaluation 

§ Goal: find lower bound to 𝑄' using data 𝒟 collected from 𝜋&
§ Let }𝑇' be the empirical Bellman operator for policy 𝜋 estimated from 𝒟
§ CQL regularization

§ Minimize 𝑄(𝑠, 𝑎) on 𝑠 ∈ 𝒟, 𝑎~ 𝜋(𝑠)
§ For 𝑎 ~ 𝜋&(𝑠) there is no need to be conservative à additionally maximize

§ CQL optimization problem for policy evaluation

min
E
𝛼 ⋅ 𝔼)~𝒟,-~' ) 𝑄 𝑠, 𝑎 − 𝔼),-~𝒟 𝑄 𝑠, 𝑎 +

1
2𝔼),-,)

"~𝒟 𝑄 𝑠, 𝑎 − }𝑇'𝑄 𝑠, 𝑎
.
,

where 𝛼 is a trade-off parameter to control how conservative we are.
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Conservative Offline RL
Conservative Control 

§ Goal: Find a good policy 𝜋 from offline data 𝒟 collected from 𝜋&
§ Iterate between policy improvement and conservative policy evaluation 
§ Online Conservative Q-Learning (𝜋 is the current policy) 

max
e
min
E

𝛼𝔼)~𝒟,-~e(-|)) 𝑄 𝑠, 𝑎 − 𝛼𝔼),-~𝒟 𝑄 𝑠, 𝑎 +
1
2𝔼),-,)

"~𝒟 𝑄 𝑠, 𝑎 − }𝑇' }𝑄! 𝑠, 𝑎
.

§ Policy improvement can be done using an actor or standard Q-Learning 
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Conservative Offline RL
CQL - Performance  

§ Ant Maze:
§ Navigate from start to goal
§ Dataset consists of random motions and no single trajectory solves the task
§ The Offline RL algorithm needs to “stich” different sub-trajectories

65

D4RL Ant Maze BC SAC BEAR BRAC AWR BCQ AlgaeDICE CQL
U-Maze 65.0 0.0 73.0 70.0 56.0 78.9 0.0 74.0
U-maze + diverse 55.0 0.0 61.0 70.0 70.3 55.0 0.0 84.0
Medium + play 0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.2
Medium + diverse 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53.7
Large + play 0.0 0.0 0.0 0.0 0.0 6.7 0.0 15.8
Large + diverse 0.0 0.0 0.0 0.0 0.0 2.2 0.0 14.9

https://bair.berkeley.edu/blog/2020/12/07/offline/

U-Maze

Medium

Large Maze
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Conservative Q-Learning

§ It is proven that the return-estimate of the learned policy 𝜋 under 𝑄fgh' is a lower-bound on the actual policy performance:

𝐽fgh 𝜋 = 𝔼)4~ijik,-4~' 𝑄fgh
' 𝑠#, 𝑎# ≤ 𝐸)4~ijik,-4~' 𝑄

' 𝑠#, 𝑎# = 𝐽 𝜋

§ We only need to add a regularizer term (which can be estimated from the dataset) during training
§ No need to estimate the behavior policy (as previous work needs)

66
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Conservative Offline RL
Model-based Offline Policy Optimization

Model-based Offline Reinforcement Learning 
1. Estimate r(𝑠, 𝑎) and 𝑝(𝑠"|𝑎, 𝑠) from 𝒟
2. Apply active reinforcement learning to the model 

§ The transitions (𝑠, 𝑎, 𝑟, 𝑠") can now be collected online à no distribution shift 

§ Nonetheless if 𝜋 is very different from 𝜋& our model is queried in unknown regions

à We still need to address the uncertainty!
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Conservative Offline RL
Model-based Offline Policy Optimization 

§ By Yu, Thomas, Yu, Ermon, Zou, Levine, Finn and Ma, 2020

Algorithm
1. Estimate r(𝑠, 𝑎) and 𝑝(𝑠"|𝑎, 𝑠) from 𝒟
2. Learn uncertainty quantification 𝑢(𝑠, 𝑎)ß This is the hard part 
3. Apply active reinforcement learning to the model using a 

pessimistic reward function 

�̃� 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 − 𝜆 ⋅ 𝑢(𝑠, 𝑎)
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Conservative Offline Model Based Policy Optimization 

§ by Yu, Kumar, Rafailov, Rajeswaran, Levine and Finn, 2021
§ Problem in MOPO: Uncertainty quantification 𝑢(𝑠, 𝑎) is notoriously difficult for neural networks
§ COMBO addresses this by combining CQL with rollouts from a model
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Conservative Offline Model Based Policy Optimization 

CQL objective 
min
E

α𝔼l~𝒟,H~m(l) Q s, a − α𝔼l,H~𝒟 Q s, a +
1
2𝔼l,H,l

"~𝒟 Q s, a − �TmQ s, a
.

§ Situation: Provided with buffer 𝒟 and a model estimated from 𝒟
§ Let �𝑑' be the marginal state distribution under 𝜋 under our model

§ Let 𝑑'
n(𝑠, 𝑎) be the 𝑓-interpolation between the offline data and rollouts from the learned model

§ Sample from 𝒟 with probability 𝑓

§ Sample from 𝑑'
n(𝑠, 𝑎) with probability 1 − 𝑓

COMBO objective 

min
E

α𝔼l~+!5,H~m(l) Q s, a − α𝔼l,H~𝒟 Q s, a + $
.𝔼l,H,l"~+!5 Q s, a − �TmQ s, a

.

§ Note that we only maximize on s, a~𝒟 à Higher trust in original data than model rollouts!
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Conservative Offline Model Based Policy Optimization 

CQL objective 

min
E

α𝔼l~𝒟,H~m(l) Q s, a − α𝔼l,H~𝒟 Q s, a +
1
2𝔼l,H,l

"~𝒟 Q s, a − �TmQ s, a
.

COMBO objective 

min
E

α𝔼l~+!5,H~m(l) Q s, a − α𝔼l,H~𝒟 Q s, a +
1
2
𝔼l,H,l"~+!5 Q s, a − �TmQ s, a

.

COMBO advantages over CQL 
§ Uses more data (i.e. from the model)
§ The data is correlated with the policy 
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COMBO – Algorithm 
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COMBO – Experimental Results
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Offline RL / Summary
Why Offline RL Should Work in Principle 

§ Find the good behaviour in a dataset of good and bad behaviour 
§ Generalize to similar states and actions 
§ Stich together good and bad behaviour 
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https://bair.berkeley.edu/blog/2020/06/25/D4RL/

AntMaze
Carla

Adroit



Offline Reinforcement Learning
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