

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 1: Markov Decision Processes (MDPs)

Nico Meyer

Opening Remarks Hello There!

Christopher Mutschler (course instructor)

Alexander Mattick (teaching assistant / exercises)

Nico Meyer (teaching assistant / exercises)

- Alex and myself will take turns in holding the exercise session
- For specific question, please write us an E-Mail or (better) ask directly in the StudOn forum
 - Will try to answer your questions there asap -> please try to be as concise as possible
- You will find exercise sheets and code skeletons here: https://cmutschler.de/rl

Overview Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Recap: Reinforcement Learning

"All goals can be described by the maximization of expected cumulative reward."

Recap Markov Decision Processes

- Agent learns by interacting with an environment over many time-steps:
- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of an MDP (S, A, P, R, γ) :

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:

If the interaction does stop at some point in time (T) then we have an *episodic RL problem*.

- At each step t, the agent:
 - is at state S_t,
 - performs action A_t,
 - receives reward R_t.
- At each step t, the environment:
 - receives action A_t from the agent,
 - provides reward R_t,
 - moves at state S_{t+1},
 - increments time $t \leftarrow t + 1$.

Recap Markov Property

- Assumption of MDPs: Markov Property
 - A state S_t is Markov if and only if

 $\mathbb{P}[S_{t+1} \mid S_1, \dots, S_{t-1}, S_t] = \mathbb{P}[S_{t+1} \mid S_t]$

- Past states S₁,..., S_{t-1} do not change the outcome for the next state S_{t+1}.
- The current state S_t captures all relevant information from the history.
- "The future is independent of the past given the present"

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- State is the information used to determine what happens next
 - Direct (fully observable): $O_t = S_t^e$
 - Indirect (partially observable): $O_t = f(S_t^e)$

Recap Reward and Discounted Return

- We want to "solve" the MDP, by maximizing future rewards.
 - We see the episodes in the form of

$$S_0 \xrightarrow{(A_0, R_0)} S_1 \xrightarrow{(A_1, R_1)} S_2 \xrightarrow{(A_2, R_2)} S_3 \dots S_{t-1} \xrightarrow{(A_{t-1}, R_{t-1})} S_t$$

- **Question:** what happens if our problem never stops (i.e., $T = \infty$)?
 - Examples: data center cooling, recommender systems, etc.
- Total discounted (γ) reward (**return**) (of one sample)

$$G = R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + \dots = \sum_{t=0}^{\infty} \gamma^t R_t$$

Recap The Policy π

• Expected long-term value of state s:

$$v(s) = \mathbb{E}(G) = \mathbb{E}(R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + ... + \gamma^t R_t)$$

- Goal: maximize the expected return 𝔼(𝔅).
- We need a controller that helps us select the actions to maximize $\mathbb{E}(G)$!
- A policy π represents this controller:
 - π determines the agent's behavior, i.e., its way of acting
 - π is a mapping from state space S to action space A

 $\pi:\,\mathcal{S}\mapsto\mathcal{A}$

- Two types of policies:
 - Deterministic policy: $a = \pi(s)$.
 - Stochastic policy: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s].$
- New goal: find a policy that maximizes the expected return!

Exercise Sheet 1

Markov Decision Processes

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!