

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 2: Value Functions, Dynamic Programming and Optimal Policies

Alexander Mattick

Overview

Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Dynamic Programming

Markov Decision Processes

Recap

- We need a controller that helps us select the actions to maximize expected cumulative reward
 - So-called: Expected return or value
- A policy π represents this controller:
 - π determines the agent's behavior, i.e., its way of acting
 - π is a mapping from state space S to action space A, i.e., $\pi : S \mapsto A$
 - Two types of policies:
 - Deterministic policy: $a = \pi(s)$.
 - Stochastic policy: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$
- **Goal**: find a policy that maximizes the expected return!
 - We denote the optimal policy π for a given MDP as π^*

Markov Decision Processes

The Value Function

(State-)Value function

$$\mathcal{V}_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_t = s\right]$$

• "Expected return following policy π from state s"

Action-value function/Q-function

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid s_t = s, a_t = a] = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_t = s, a_t = a\right]$$

• "Expected return of doing action a in state s and following policy π afterwards"

Dynamic Programming

Introduction

- Limited utility in practical reinforcement learning, but theoretical importance
 - Why?
- Idea: Use value functions to organize and structure the search for good policies
 - We can easily obtain optimal policies once we have found the optimal value function (and vice versa)
 - Founded on the Bellman optimality equation(s)

Bellman-Optimality Equation

$$V_{\pi^*}(s) = \max_{a} Q_{\pi^*}(s, a) = \max_{a} \mathbb{E}_{\pi^*}[r_t + \gamma V_{\pi^*}(s)]$$

Four key concepts

- Policy Evaluation
- Policy Improvement
- (Generalized) Policy Iteration
- Value Iteration

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Policy Evaluation

• Given a policy π and the environment dynamics, we can easily compute the value of state:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s] = \dots = \sum_{a} \pi(a|s) \sum_{s' r} P(s', r \mid s, a)[r + \gamma V_{\pi}(s')]$$

- System of #states linear equations with #states unknowns
 - Can be solved straightforwardly
 - For our purposes, we solve it iteratively

```
Iterative Policy Evaluation, for estimating V \approx v_{\pi}

Input \pi, the policy to be evaluated

Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation

Initialize V(s) arbitrarily, for s \in S, and V(terminal) to 0

Loop:

\Delta \leftarrow 0

Loop for each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta
```


Policy Improvement

• Given a policy π and its value function (and the environement dynamics), greedily take the action that looks good in the short term

$$\pi'(s) = \arg \max_{a} Q_{\pi}(s, a)$$

- Suppose $\pi' = \pi$, then π' fullfils the Bellman optimality equation in all states
 - Therefore: We found the optimal policy

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating π ≈ π_{*}
1. Initialization

V(s) ∈ ℝ and π(s) ∈ A(s) arbitrarily for all s ∈ S; V(terminal) ≐ 0

2. Policy Evaluation

Lagritude

```
Loop:

\Delta \leftarrow 0
Loop for each s \in S:

v \leftarrow V(s)
V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma V(s')]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy-stable \leftarrow true

For each s \in S:

old-action \leftarrow \pi(s)
\pi(s) \leftarrow \arg\max_a \sum_{s',r} p(s', r | s, a) [r + \gamma V(s')]
If old-action \neq \pi(s), then policy-stable \leftarrow false

If policy-stable, then stop and return V \approx v_* and \pi \approx \pi_*; else go to 2
```


Value Iteration

Drawback of Policy Iteration: We must do a full Policy Evaluation procedure for every step, which is costly!

- We can also truncate this:
 - If we stop the policy evaluation after just one sweep, this is called Value Iteration
 - Surprisingly, this corresponds to translating the Bellman optimality equation into an update rule
 - We can also drop the policy improvement step because we are only interested in the final policy
 - Downside of this: More iteration to convergence needed

```
Value Iteration, for estimating \pi \approx \pi_*

Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation

Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0

Loop:

\Delta \leftarrow 0

Loop for each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta

Output a deterministic policy, \pi \approx \pi_*, such that

\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
```


Dynamic Programming

Summary

- Policy Evaluation
 - Given policy π , compute its (approximate) value function for (part of) the state space
- Policy Improvement
 - Given value function $V_{\pi}(s)$, extract the greedy policy π' with $V_{\pi'}(s) \ge V_{\pi}(s)$
- (Generalized) Policy Iteration
 - Repeat until convergence (policy doesn't change after improvement, i.e., Bellman optimality equation holds)
 - Do x steps of Policy Evaluation
 - Do Policy Improvement
- Value Iteration
 - Special case of Policy Iteration with 1 Policy Evaluation step
 - Converged when change in value estimates smaller than some threshold
 - Policy Improvement step only as the last step

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!