
Reinforcement Learning

—

Exercise 2: Value Functions, Dynamic Programming and

Optimal Policies

Alexander Mattick

Overview
Exercise Content

2

Dynamic Programming

Slide 3

Markov Decision Processes
Recap

▪ We need a controller that helps us select the actions to maximize expected cumulative reward

▪ So-called: Expected return or value

▪ A policy 𝜋 represents this controller:

▪ 𝜋 determines the agent’s behavior, i.e., its way of acting

▪ 𝜋 is a mapping from state space 𝒮 to action space 𝒜, i.e., 𝜋 ∶ 𝒮 ↦ 𝒜

▪ Two types of policies:

▪ Deterministic policy: 𝑎 = 𝜋(𝑠).

▪ Stochastic policy: 𝜋 𝑎 | 𝑠 = ℙ 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠]

▪ Goal: find a policy that maximizes the expected return!

▪ We denote the optimal policy 𝜋 for a given MDP as 𝜋∗

4

Markov Decision Processes
The Value Function

(State-)Value function

𝑉𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 | 𝑠𝑡 = 𝑠 = 𝔼𝜋

𝑡=0

∞

𝛾𝑡𝑟𝑡 | 𝑠𝑡 = 𝑠

▪ ”Expected return following policy 𝜋 from state 𝑠”

Action-value function/Q-function

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 = 𝔼𝜋

𝑡=0

∞

𝛾𝑡𝑟𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

▪ “Expected return of doing action 𝑎 in state 𝑠 and following policy 𝜋 afterwards”

5

Dynamic Programming
Introduction

▪ Limited utility in practical reinforcement learning, but theoretical importance

▪ Why?

▪ Idea: Use value functions to organize and structure the search for good policies

▪ We can easily obtain optimal policies once we have found the optimal value function (and vice versa)

▪ Founded on the Bellman optimality equation(s)

Bellman-Optimality Equation
𝑉𝜋∗ 𝑠 = max

𝑎
𝑄𝜋∗ 𝑠, 𝑎 = max

𝑎
𝔼𝜋∗[𝑟𝑡 + 𝛾𝑉𝜋∗ 𝑠]

Four key concepts

▪ Policy Evaluation

▪ Policy Improvement

▪ (Generalized) Policy Iteration

▪ Value Iteration

Slide 6

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Policy Evaluation

▪ Given a policy 𝜋 and the environment dynamics, we can easily compute the value of state:

𝑉𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 | 𝑠𝑡 = 𝑠 = … =

𝑎

𝜋 𝑎 𝑠

𝑠′ 𝑟

𝑃 𝑠′, 𝑟 𝑠, 𝑎)[𝑟 + 𝛾𝑉𝜋 𝑠′]

▪ System of #𝑠𝑡𝑎𝑡𝑒𝑠 linear equations with #𝑠𝑡𝑎𝑡𝑒𝑠 unknowns

▪ Can be solved straightforwardly

▪ For our purposes, we solve it iteratively

Slide 7

Policy Improvement

▪ Given a policy 𝜋 and its value function (and the environement dynamics), greedily take the action that looks good in the
short term

𝜋′ 𝑠 = 𝑎𝑟𝑔 max
𝑎

𝑄𝜋 (𝑠, 𝑎)

▪ Suppose 𝜋’ = 𝜋, then 𝜋′ fullfils the Bellman optimality equation in all states

▪ Therefore: We found the optimal policy

Slide 8

How to be optimal:

1. Take correct first

action

2. Keep being optimal

http://ai.berkeley.edu/lecture_slides.html

https://www.mathworks.com/discovery/deep-learning.html
http://ai.berkeley.edu/lecture_slides.html

Policy Iteration

Slide 9

Value Iteration

Slide 10

▪ Drawback of Policy Iteration: We must do a full Policy Evaluation procedure for every step, which is costly!

▪ We can also truncate this:

▪ If we stop the policy evaluation after just one sweep, this is called Value Iteration

▪ Surprisingly, this corresponds to translating the Bellman optimality equation into an update rule

▪ We can also drop the policy improvement step because we are only interested in the final policy

▪ Downside of this: More iteration to convergence needed

Dynamic Programming
Summary

▪ Policy Evaluation

▪ Given policy 𝜋, compute its (approximate) value function for (part of) the state space

▪ Policy Improvement

▪ Given value function 𝑉𝜋 𝑠 , extract the greedy policy 𝜋′with 𝑉𝜋′ 𝑠 ≥ 𝑉𝜋 𝑠

▪ (Generalized) Policy Iteration

▪ Repeat until convergence (policy doesn’t change after improvement, i.e., Bellman optimality equation holds)

▪ Do 𝑥 steps of Policy Evaluation

▪ Do Policy Improvement

▪ Value Iteration

▪ Special case of Policy Iteration with 1 Policy Evaluation step

▪ Converged when change in value estimates smaller than some threshold

▪ Policy Improvement step only as the last step

Slide 11

Thank you for your attention!

	Folie 1
	Folie 2: Overview
	Folie 3: Dynamic Programming
	Folie 4: Markov Decision Processes
	Folie 5: Markov Decision Processes
	Folie 6: Dynamic Programming
	Folie 7: Policy Evaluation
	Folie 8: Policy Improvement
	Folie 9: Policy Iteration
	Folie 10: Value Iteration
	Folie 11: Dynamic Programming
	Folie 12

