

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 4: Model-free Prediction

Nico Meyer

Overview

Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Overview Overall Picture

Recap Model-free Prediction

Recap

Monte Carlo and TD Methods

- So far: We know our MDP model $(S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$.
 - Planning by using dynamic programming
 - Solve a known MDP
- What if we don't know the model, i.e., \mathcal{P} or \mathcal{R} or both?
- We distinguish between 2 problems for unknown MDPs:
 - Model-free Prediction: Evaluate the future, given the policy π. (estimate the value function)
 - Model-free Control: Optimize the future by finding the best policy π.
 (optimize the value function)

Recap Monte Carlo Policy Evaluation

- MC Policy Evaluation
 - MC methods learn from episodes of experience under policy π :

 $s_t, a_t, r_t, s_{t+1}, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T \sim \pi$

- To evaluate a state $s \in S$ we keep track of the rewards received from that state onwards.
- First-Visit Monte-Carlo Policy Evaluation:
 - First time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$,
 - Increment total return $S(s) \leftarrow S(s) + G_t$,
 - Value is estimated by mean return: V(s) = S(s)/N(s)
 - Our estimation V(s) will come close to $V^{\pi}(s)$ as $N(s) \rightarrow \infty$. (considering the law of large numbers)

Recap

Temporal Difference Policy Evaluation

- Temporal-Difference Learning
 - Breaks up episodes and makes use of the intermediate returns
 - Learns from incomplete episodes (bootstrapping)
 - We update a guess towards a guess

$$V^{\pi}(s) = \underbrace{r(s,\pi(s))}_{s'\in S} + \underbrace{\gamma}_{s'\in S} \underbrace{\mathcal{P}(s'|s,\pi(s))}_{v^{\pi}(s')} V^{\pi}(s')$$

$$(s,a,r,s')$$

$$V^{\pi}(s) = r + \gamma V^{\pi}(s')$$

$$V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$$

We don't know the transition model

But we have real transitions available

Let's assume that the reality is the transition we observed

 \rightarrow and update our old estimate "a bit" in this direction

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Recap TD and MC Algorithms

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated

Algorithm parameter: step size \alpha \in (0, 1]

Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

A \leftarrow action given by \pi for S

Take action A, observe R, S'

V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]

S \leftarrow S'

until S is terminal
```

```
\begin{array}{l} \textbf{First-visit MC prediction, for estimating } V \approx v_{\pi} \\ \\ \textbf{Input: a policy } \pi \text{ to be evaluated} \\ \textbf{Initialize:} \\ V(s) \in \mathbb{R}, arbitrarily, for all $s \in \$ \\ Returns(s) \leftarrow \text{ an empty list, for all } s \in \$ \\ \\ \textbf{Loop forever (for each episode):} \\ \textbf{Generate an episode following } \pi: S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T \\ G \leftarrow 0 \\ \textbf{Loop for each step of episode, } t = T-1, T-2, \dots, 0: \\ G \leftarrow \gamma G + R_{t+1} \\ \textbf{Unless } S_t \text{ appears in } S_0, S_1, \dots, S_{t-1}: \\ \textbf{Append } G \text{ to } Returns(S_t) \\ V(S_t) \leftarrow \operatorname{average}(Returns(S_t)) \end{array}
```

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Recap

Advantages and Disadvantages of MC and TD

- Which one should I use? Does it make any difference?
 - Bias/Variance Trade-Off
 - MC has high variance, but zero bias
 - good convergence (even with FA)
 - insensitive to initialization (no bootstrapping), simple to understand
 - only works for episodic problems (must wait until end of episode for update)
 - more efficient in non-Markov environments
 - TD has low variance, but some bias
 - TD(0) converges to $\pi_v(s)$ (be careful with FA: bias is a risk)
 - sensitive to initialization (because of the bootstrapping)
 - update after each step
 - exploits Markov property and is more efficient in Markov environment
 - usually more efficient in practice

Exercise Sheet 4

Model-free Prediction

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!