

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 5: Model-free Control

Nico Meyer

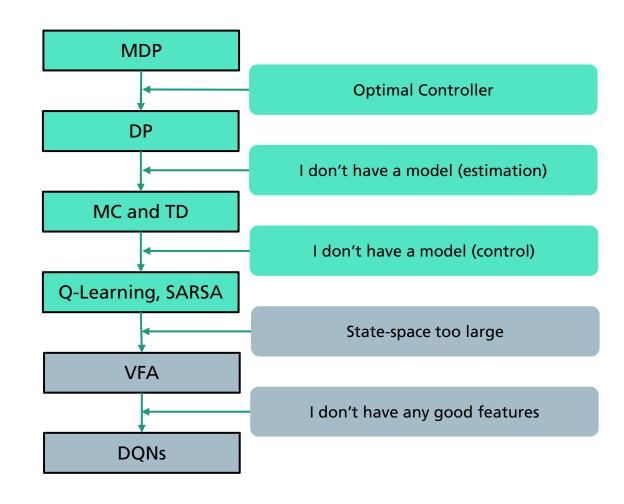
Overview

Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Overview

Overall Picture



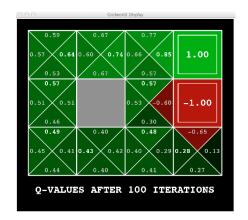
Model-free Control

TD Methods

State-action-value function

$$s \xrightarrow{a, r_0} s_1 \xrightarrow{\pi(S_1), r_1} s_2 \xrightarrow{\pi(S_2), r_2} s_3 \dots s_{h-1} \xrightarrow{\pi(s_{h-1}), r_{h-1}} s_h$$

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a \right]$$



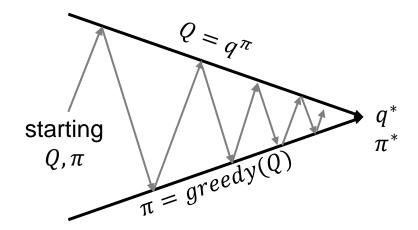
Greedy Policy Improvement over Q:

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi}(s, a)$$

$$\forall s \in \mathcal{S}, \qquad Q^{\pi'}(s, \pi'(s)) \ge Q^{\pi}(s, \pi(s))$$

Model-free Control

- The (model-free) control problem:
 - **Given** experience samples s(s, a, r, s')
 - **Learn** a close-to optimal policy π
- Simple idea:
 - If we have calculated the value function for a given policy π (e.g., from MC/TD policy evaluation from last week), we can use it for deriving a better policy π' through greedy policy improvement over Q(s)



Policy Evaluation: Estimate $Q = q_{\pi}$

e.g., Monte Carlo Policy Evaluation

Policy Improvement: Generate $\pi' \geq \pi$

e.g., Greedy Policy Improvement over Q

Q-Learning and SARSA Algorithms

Problem:

We do not know \mathcal{P} or \mathcal{R} or both of the MDP $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$

Solution:

Model-free methods that use experience samples s(s, a, r, s')

In Exercise 4 we did:

Model-free Prediction: Evaluate the future, given the policy π . (estimate the value function)

In Exercise 5 we will do:

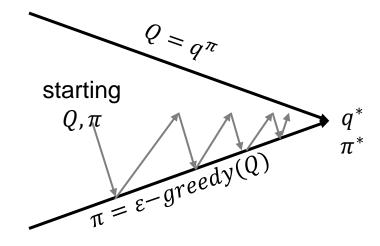
Model-free Control: Optimize the future by finding the best policy π . (optimize the value function)

Update every time step:

Policy Evaluation: Estimate $Q \approx q_{\pi}$ e.g., SARSA, Q-learning

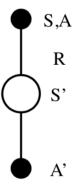
Policy Improvement: Generate $\pi' \geq \pi$

e.g., ϵ -greedy Policy Improvement over Q



SARSA: On-policy control

- Apply TD to Q(s,a)
- Use ε -greedy policy improvement
- Update at every time-step



Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$$

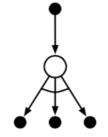
 $S \leftarrow S'; A \leftarrow A';$

until S is terminal

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Q-learning: Off-policy control

- Evaluate one policy while following another
- Can re-use experience gathered from old policies



Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
```

Initialize
$$Q(s, a)$$
, for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

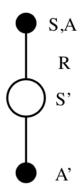
until S is terminal

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Q-Learning vs. SARSA

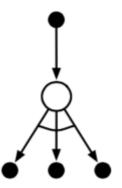
SARSA algorithm (on-policy control)

- + Processes each sample immediately
- + Minimal update cost per sample
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits instabilities under approximate representations
- Poses constraints on sample collection (on-policy)
- Requires careful handling on the policy greediness



Q-Learning algorithm (off-policy control)

- + Processes each sample immediately
- + Minimal update cost per sample
- + Poses no constraints on sample collection (off-policy)
- Requires a huge number of samples
- Requires careful schedule for the learning rate
- Makes minimal use of each sample
- The ordering of samples influences the outcome
- Exhibits (even more) instabilities under approximate representations



Epsilon-greedy policy

Why should we follow an ϵ -greedy policy? Isn't this suboptimal?

Exercise Sheet 5

Model-free Control

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!