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Exercise Sheet 6
Value Function Approximation
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Deep Q-Networks (DQNSs)

Deep Q-Networks
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Deep Q Networks

—_ Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do

Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do e

With probability ¢ select a random action a,

SAMPLE OBSERVATIONS
otherwise select a, =argmax, Q(¢(s;).a; 0) prasce r-_]
Execute action a, in emulator and observe reward r, and image x; ; ,
Set s; 41 =5:,a1,X:+1 and preprocess ¢, . | =(s¢+1)
Store transition (¢,,a;.r,¢,,,) in D e l_m_f
Sample random minibatch of transitions (¢-,aj,rj,¢j+ 1) from D i

rj if episode terminates at step j+ 1 @
Sety;=

rj+7y maxy Q(qﬁjH,a’; 0‘) otherwise

Perform a gradient descent step on (yj — Q((I)j,aj; 0) ) ’ with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For
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Policy-based Reinforcement Learning
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Policy-based Reinforcement Learning
Change of pipeline

— ( . ) ([ A
Neét St)ate | Value Function , Policy
t+1 \ (Q‘ (s, a; w)) ) (e-Greedy)
So far: Action
[ Environment L 2
Reward L J

(R(st, e Set1)) ) ) )
Goal: find w that approximates the true Q-function

Next State ( Policy
(st+1) | (=(alss; 6))

Now: .
Action
| Environment |’ (@)
Reward L J
(R(s¢y at) Se41)) ] ..
Goal: find @ that maximizes long term reward
L
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Policy-based Reinforcement Learning
Advantages and Disadvantages

Advantages
 (Good convergence properties
» Easily extended to high-dimensional or continuous state and action spaces
« Can learn stochastic policies
» Sometimes policies are simple while values and models are complex
* e.g., rich domain, but optimal is always to go left

Disadvantages:

» Susceptible to local optima (especially with non-linear FA)

» Obtained knowledge is specific, does not always generalize well
» Ignores a lot of information in the data (when used in isolation)
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Policy-based Reinforcement Learning
Stochastic policies

We have seen deterministic policies like this: 1 — |

Take Environment
action

State gives Q(s, a; w) and we selected (a|s) by argmax, Q(s, a; w)

O
parameter 6

Observe state

https://towardsdatascience.com/self-learning-ai-
agents-iv-stochastic-policy-gradients-b53f088fce20

Instead, stochastic policies do something like this:
m(als)

n(als) = Plals; 6]

(policy is represented as a probability distribution)

» optimal policy might be stochastic
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Policy-based Reinforcement Learning
Stochastic policies

Instead, stochastic policies do something like this:

6!

m An optimal stochastic policy will randomly move E or W in

n(a|s) = P[als; 9] grey states

mg(wall to N and S, move E) = 0.5

_ _ _ _ _ mg(wall to N and S, move W) = 0.5
Side note: Sometimes a stochastic policy is better _ | e N
m It will reach the goal state in a few steps with high probability

than a deterministic one, even if the environment is deterministic m Policy-based RL can learn the optimal stochastic policy
Stochastic Policies also allow for nicer exploration (later). Source: https:/fomkar-ranadive.github.io/posts/rl-I7-ds

Downside is that they often are less interpretable.
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Policy-based Reinforcement Learning
Optimizing via gradient ascent

T-1
6@ = ). yRGsha)

Our goal is to maximize the expected reward:

max Er, G(1)

(where my is a parameterized policy, e.g., a neural network)

But how do we maximize this?
— Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

VoErr,G(T) Policy Gradient

often in literature
referred to as VyJ ()

Then we can update our parameters 6 in the direction of the gradient:

0«0+ aVyE, ,G(1)
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Policy-based Reinforcement Learning
REINFORCE

Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization 7 (al|s, @)
Algorithm parameter: step size o > 0
Initialize policy parameter @ € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, Ry, ..., S7-1, Ar_1, Ry, following 7(-|-, )
Loop for each step of the episode t =0,1,...,7T — 1:
G Zg:tﬂ VIR,
0+ 0+ ay'GVinm(AS;, 0)

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

11

Intuition: The
gradient tries to

* Increase
probability of
paths with
positive G

* Decrease
probability of
paths with
negative G

\

~ Fraunhofer

s



Exercise Sheet 7.1
Vanilla Policy Gradient (VPG)
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Actor Critic Approaches
Introduce critic that estimates Q

= The policy gradient we used so far (without baseline to begin with):

T
1
ToEryG(D) ~ T ) ) Vglogmp(aclsy) G(r)

L
T t=0
1 T T
~ Zz z Vg logmg(a|se) z Yt _tR(St"at’)
I=t

T t=0 t'=
\ J

= Qn('St: ac)

» Use e.g. a neural network to approximate Q!
= |n practice: estimate v™(s;; ¢) explicitly, and then sample

q"(s¢,ar) = Gt(n)
Le. GV =Ry +yv™(Se41 ¢)
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Actor Critic Approaches
Advantage Actor Critic (A2C)

= Introduce a baseline: = Q”(st, az)

Vo EryG(7) ~ 22\79 logne(ausazyt ~tR(s,1,apr) — b(sy)

‘ctO

=2y Z 75 log o (aclse)|(Ge—b(s0)

T t=0
= A" (s, ag)

» Calculate via TD error:

A" (s¢,ar) = Q" (s, ar) — V™ (s)
=r+y-v"—v7(s)

» Or multi-step TD error: “Generalized Advantage Estimation (GAE)”
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Exercise Sheet 7.2
Advantage Actor Critic (A2C)
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