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Deep Q-Networks (DQNs)
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Deep Q Networks
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Policy-based Reinforcement Learning

5

Demonstration Data

Learn Policy
Learn Value 

Function

Policy

Im
it
a

ti
o

n
 L

e
a

rn
in

g

In
v
e

rs
e
 

R
e

in
fo

rc
e
m

e
n
t 

L
e

a
rn

in
g

Experience Data

Learn Model
Learn Value 

Function

Policy Search / 

Planning

Learn Policy

M
o

d
e

l-
b

a
s
e
d
 

R
e

in
fo

rc
e
m

e
n
t 

L
e

a
rn

in
g

P
o

lic
y
 S

e
a

rc
h

 /
 

P
o

lic
y
 G

ra
d

ie
n

ts

Policy

V
a

lu
e

-b
a
s
e
d
 

R
e

in
fo

rc
e
m

e
n
t 

L
e

a
rn

in
g

Actor Critic



Policy-based Reinforcement Learning
Change of pipeline
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Goal: find 𝒘 that approximates the true 𝑸-function

Action

(𝑎𝑡)

Next State

(𝑠𝑡+1)

Reward

(𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1))

Environment

Value Function

( ෠𝑄(𝑠, 𝑎; 𝒘))

Policy

(𝜖-Greedy)

Goal: find 𝜽 that maximizes long term reward

Action

(𝑎𝑡)

Next State

(𝑠𝑡+1)

Reward

(𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1))

Environment

Policy

(𝜋 𝑎𝑡 𝑠𝑡; 𝜽))

So far:

Now:



Policy-based Reinforcement Learning
Advantages and Disadvantages
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Advantages:

• Good convergence properties

• Easily extended to high-dimensional or continuous state and action spaces

• Can learn stochastic policies

• Sometimes policies are simple while values and models are complex

• e.g., rich domain, but optimal is always to go left

Disadvantages:

• Susceptible to local optima (especially with non-linear FA)

• Obtained knowledge is specific, does not always generalize well

• Ignores a lot of information in the data (when used in isolation)



Policy-based Reinforcement Learning
Stochastic policies
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We have seen deterministic policies like this:

State gives 𝑄 𝑠, 𝑎; 𝑤 and we selected 𝜋 𝑎|𝑠 by argmax𝑎 𝑄(𝑠, 𝑎; 𝑤)

Instead, stochastic policies do something like this:

𝜋 𝑎|𝑠 =  ℙ 𝑎|𝑠; 𝜃

➢ optimal policy might be stochastic

https://towardsdatascience.com/self-learning-ai-

agents-iv-stochastic-policy-gradients-b53f088fce20

(policy is represented as a probability distribution)



Policy-based Reinforcement Learning
Stochastic policies
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Instead, stochastic policies do something like this:

𝜋 𝑎|𝑠 =  ℙ 𝑎|𝑠; 𝜃

Side note: Sometimes a stochastic policy is better 

than a deterministic one, even if the environment is deterministic

Stochastic Policies also allow for nicer exploration (later).

Downside is that they often are less interpretable.

Source: https://omkar-ranadive.github.io/posts/rl-l7-ds



Policy-based Reinforcement Learning
Optimizing via gradient ascent
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• Our goal is to maximize the expected reward:

max
𝜃

𝔼𝜋𝜃
𝐺 𝜏

(where 𝜋𝜃 is a parameterized policy, e.g., a neural network)

• But how do we maximize this? 

→ Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

𝛻𝜃𝔼𝜏~𝜋𝜃
𝐺 𝜏

• Then we can update our parameters 𝜃 in the direction of the gradient:

𝜃 ← 𝜃 + 𝛼𝛻𝜃𝔼𝜏~𝜋𝜃
𝐺 𝜏

𝐺 𝜏  ≔  ෍
𝑡=0

𝑇−1

𝛾𝑡𝑅 𝑠𝑡 , 𝑎𝑡

Policy Gradient

often in literature 

referred to as 𝛻𝜃𝐽 𝜋𝜃



Policy-based Reinforcement Learning
REINFORCE
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.

Intuition: The 

gradient tries to 

• Increase 

probability of 

paths with 

positive 𝐺

• Decrease 

probability of 

paths with 

negative 𝐺



Exercise Sheet 7.1
Vanilla Policy Gradient (VPG)
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Actor Critic Approaches
Introduce critic that estimates Q
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▪ The policy gradient we used so far (without baseline to begin with):

𝛻𝜃𝔼𝜋𝜃
𝐺 𝜏 ≈

1

𝐿
෍

𝜏

෍

𝑡=0

𝑇

𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 𝐺(𝜏)

≈
1

𝐿
෍

𝜏

෍

𝑡=0

𝑇

𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 ෍

𝑡′=𝑡

𝑇

𝛾𝑡′−𝑡𝑅 𝑠𝑡′ , 𝑎𝑡′

➢ Use e.g. a neural network to approximate Q!

▪ In practice: estimate 𝑣𝜋(𝑠𝑡; 𝜙) explicitly, and then sample

𝑞𝜋 𝑠𝑡 , 𝑎𝑡 ≈ 𝐺𝑡
𝑛

     i.e. ෠𝐺𝑡
(1)

= 𝑅𝑡 + 𝛾𝑣𝜋(𝑠𝑡+1; 𝜙)

=  𝑄𝜋(𝑠𝑡 , 𝑎𝑡)



Actor Critic Approaches
Advantage Actor Critic (A2C)
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▪ Introduce a baseline:

𝛻𝜃𝔼𝜋𝜃
𝐺 𝜏 ≈

1

𝐿
෍

𝜏

෍

𝑡=0

𝑇

𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 ෍

𝑡′=𝑡

𝑇

𝛾𝑡′−𝑡𝑅 𝑠𝑡′ , 𝑎𝑡′ − 𝑏 𝑠𝑡

=
1

𝐿
෍

𝜏

෍

𝑡=0

𝑇

𝛻𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 ( ෠𝐺𝑡−𝑏 𝑠𝑡 )

➢ Calculate via TD error:

𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋 𝑠𝑡

𝐴𝜋 𝑠𝑡 , 𝑎𝑡 = 𝑟 + 𝛾 ⋅ 𝑣𝜋 − 𝑣𝜋(𝑠𝑡)

➢ Or multi-step TD error: “Generalized Advantage Estimation (GAE)”

=  𝑄𝜋(𝑠𝑡 , 𝑎𝑡)

: = 𝐴𝜋 𝑠𝑡 , 𝑎𝑡



Exercise Sheet 7.2
Advantage Actor Critic (A2C)
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Thank you for your attention!
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