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Exploration vs. Exploitation
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Exploration vs. Exploitation
Why and How

Slide 3

▪ Both definitions stem from the same problem:

▪ Exploration: do things you haven’t done before
(in the hopes of getting even higher reward)
→ increase knowledge

▪ Exploitation: do what you know to yield highest reward
→ maximize performance based on knowledge

Multi-armed bandits

(1-step stateless

RL problems)

Contextual bandits

(1-step

RL problems)

Small, finite MDPs

(e.g., tractable planning,

model-based RL)

Large, infinite MDPs

(e.g., continuous spaces)

theoretically tractable theoretically intractable

(illustration adapted from Sergey Levine’s CS285 class from UC Berkeley)



Exploration vs. Exploitation
Multi-Armed Bandits and Regret
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▪ The multi-armed-bandit problem is a classic problem used to study the
exploration vs. exploitation dilemma

▪ Imagine you are in a casino with multiple slot machines, each configured
with an unknown reward probability:

▪ Under the assumption of an infinite number of trials:

→ What is the best strategy to achieve highest long-term rewards? 

▪ Our loss function is the total regret we might have by not select the optimal action up to the time step 𝑇:

ℒ𝑇 =  𝔼 

𝑡=1

𝑇

𝜃∗ − 𝑄 𝑎𝑡 = 

𝑎∈𝒜

𝑁𝑇 𝑎 ∆𝑎

45%

Slot Machine #1

60%

Slot Machine #2

20%

Slot Machine #3

25%

Slot Machine #4

?

per-action regret

action-selection counterwhat we should have been doing

what we did



Exploration vs. Exploitation
Straightforward but usually bad: Greedy or 𝜀-greedy
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▪ Greedy may select a suboptimal action forever
→ Greedy has hence linear expected total regret

▪ 𝜖-greedy continues to explore forever

▪ with probability 1 − 𝜖 it selects 𝑎 = arg max
𝑎∈𝒜

𝑄𝑇(𝑎)

▪ with probability 𝜖 it selects a random action

▪ Will hence continue to select all suboptimal actions with (at least) a probability of 
𝜖

𝒜

→ 𝜖-greedy, with a constant 𝜖 has a linear expected total regret

▪ Option #1: decrease 𝝐 over course of training might work

▪ It is not easy to tune the parameters

▪ Option #2: be optimistic with options of high 
uncertainty

▪ Prefer actions for which you do not have a 
confident value estimation yet
→ Those have a great potential to be high-
rewarding!

▪ This idea is called Upper Confidence Bounds



Exploration vs. Exploitation
Upper Confidence Bounds (UCB1)
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▪ Idea: estimate an upper confidence 𝑈𝑡 𝑎 for each action value, such that with a high probability we satisfy

𝑄 𝑎 ≤ 𝑄𝑡 𝑎 + 𝑈𝑡(𝑎)

▪ Next, we select the action that maximizes the upper confidence bound:

𝑎𝑡
𝑈𝐶𝐵 = arg max

𝑎∈𝒜
𝑄𝑡 𝑎 + 𝑈𝑡(𝑎)

Small 𝑁𝑡 𝑎 → large bound 𝑈𝑡(𝑎) (estimated value is 

uncertain)

Large 𝑁𝑡 𝑎 → small bound 𝑈𝑡(𝑎) (estimated value is 

certain/accurate)

▪ The vanilla UCB1 algorithm uses 𝑝 = 𝑡−4:

𝑈𝑡 𝑎 =
2 log 𝑡

𝑁𝑡 𝑎
and    𝑎𝑡

𝑈𝐶𝐵 = arg max
𝑎∈𝒜

𝑄 𝑎 +
2 log 𝑡

𝑁𝑡(𝑎)

▪ This ensures that we always keep exploring

▪ But we select the optimal action much more often as 𝑡 → ∞

Derived from Hoeffding’s Inequality:

𝑃 𝔼 𝑋 ≥ ത𝑋𝑡 + 𝑢 ≤ 𝑒−2𝑡𝑢2



Exploration vs. Exploitation
Probability Matching via Thompson Sampling
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We can also try the idea of directly sampling the action

▪ Select action 𝑎 according to probability that 𝑎 is the optimal action (given the history of everything we observed so far):
𝜋𝑡 𝑎|ℎ𝑡 = 𝑃 𝑄 𝑎 > 𝑄 𝑎′ , ∀𝑎′ ≠ 𝑎| ℎ𝑡

𝜋𝑡 𝑎|ℎ𝑡 = 𝔼𝑟|ℎ𝑡
𝕀 𝑎 = arg max

𝑎∈𝒜
𝑄 𝑎

Probability matching via Thompson Sampling:

1. Assume 𝑄 𝑎 follows a Beta distribution for the Bernoulli bandit

▪ As 𝑄(𝑎) is the success probability of 𝜃

▪ Beta 𝛼, 𝛽 is within 0,1  ,and 𝛼 and 𝛽 relate to the counts of success/failure

2. Initialize prior (e.g., 𝛼 = 𝛽 = 1 or something different/what we think it is)

3. At each time step 𝑡 we sample an expected reward 𝑄 𝑎 from the prior Beta 𝛼𝑖 , 𝛽𝑖 for every action

▪ We select and execute the best action among the samples: 𝑎𝑡
𝑇𝑆 = arg max

𝑎∈𝒜
𝑄 𝑎

4. With the newly observed experience we update the Beta distribution:

𝛼𝑖 ← 𝛼𝑖 + 𝑟𝑖𝕀 𝑎𝑡
𝑇𝑆 = 𝑎𝑖

𝛽𝑖 ← 𝛽𝑖 + (1 − 𝑟𝑖)𝕀 𝑎𝑡
𝑇𝑆 = 𝑎𝑖



Exercise Sheet 10
Bandits
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Prediction-based Exploration in Deep RL
ICM and RND
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Exploration in Deep RL
Intrinsic Rewards as Exploration Bonuses

▪ Instead of 𝑟 𝑠, 𝑎 we provide 𝑟+ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + ℬ 𝑁 𝑠

▪ We can give this to any model-free agent!

▪ A general formulation looks like this:

𝑟𝑡 = 𝑟𝑡
𝑒 + 𝛽 ⋅ 𝑟𝑡

𝑖  

▪ 𝛽 is a hyperparameter that adjusts the balance between exploitation and exploration

▪ 𝑟𝑡
𝑒 is called the extrinsic reward form the environment at time 𝑡

▪ 𝑟𝑡
𝑖 is called the intrinsic reward, i.e., the exploration bonus at time 𝑡

▪ The intrinsic reward is/can be inspired intrinsic motivation1 and we can transfer those findings to RL too:

1. Discovery of novel states

2. Improvement of the agent’s knowledge about the environment

10

decreases with 𝑁 𝑠

1 Pierre-Yves Oudeyer and Frederic Kaplan: How can we define intrinsic motivation? 8th Intl. Conf. Epigenetic Robotics



Prediction-based Exploration
Predicting Models: Forward Dynamics

▪ Idea of the forward dynamics prediction model:

▪ The agent learns a parameterized function 𝑓𝜃 such that:

𝑓𝜃: 𝑠𝑡 , 𝑎𝑡 → 𝑠𝑡+1

▪ Derive a reward bonus based on the prediction error of the dynamics model

𝑒 𝑠𝑡 , 𝑎𝑡 = 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 2
2

▪ Large prediction error: high bonus (as we encountered something unusual/unknown)

▪ Low prediction error: low bonus (as we have seen this coming)

▪ Our agent uses all the experience samples 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1 collected so far and retrains its prediction model as it interacts 
with the environment

11



Prediction-based Exploration
Predicting Forward Dynamics

Deep Predictive Models1

▪ Predicting high-dimensional state spaces (images) can become very difficult

▪ Train a forward dynamics model in an encoding space 𝜙 (train an autoencoder):

𝑓𝜙: 𝜙 𝑠𝑡 , 𝑎𝑡 → 𝜙 𝑠𝑡+1

▪ Normalize the prediction error at time 𝑇 by the maximum error so far:

ҧ𝑒𝑡 =
𝑒𝑡

max
𝑖≤𝑡

𝑒𝑖

▪ Define the extrinsic reward accordingly (𝐶 is a decay parameter):

𝑟𝑡
𝑖 =

𝑒𝑡 𝑠𝑡 , 𝑎𝑡

𝑡 ⋅ 𝐶

▪ The autoencoder can be trained upfront using images collected randomly or trained along with the policy and being 
updated steadily.

12

1 Stadie, Levine, Abbeel: Incentivizing Exploration in Reinforcement Learning with Deep Predictive Models. 2015.



Prediction-based Exploration
Predicting Forward Dynamics

Intrinsic Curiosity Module (ICM)1

▪ Instead of an autoencoder ICM trains the state space
encoding 𝜙(𝑠𝑡) with a self-supervised inverse dynamics model

▪ Motivation:

▪ Predicting 𝑠𝑡+1 given 𝑠𝑡 , 𝑎𝑡 is not always easy as many factors in
the environment cannot be controlled/affected by the agent

▪ Popular example: imagine this tree with leaves

▪ Such factors should not be part of the encoded state space as
the agent should not base its decision based on these factors

▪ Solution: Learn an inverse dynamics model 𝑔:

𝑔: 𝜙 𝑠𝑡 , 𝜙 𝑠𝑡+1 → 𝑎𝑡

▪ The feature space then only captures those changes in the environment related to actions that the agent takes, and ignores 
the rest

13

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.

learn to explore in Level-1 explore faster in Level-2



Prediction-based Exploration

Intrinsic Curiosity Module (ICM)1, given

▪ a forward model 𝑓 with parameters 𝜃𝐹

▪ an inverse dynamics model 𝑔 with parameters 𝜃𝐼

▪ and an observation 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1

▪ The policy is jointly optimized as a whole:

min
𝜃𝑃 ,𝜃𝐼,𝜃𝐹

−𝜆𝔼𝜋 𝑠𝑡;𝜃𝑃
σ𝑡 𝑟𝑡 + 1 − 𝛽 𝐿𝐼 + 𝛽𝐿𝐹

14

ො𝑎𝑡 = 𝑔 𝜙(𝑠𝑡), 𝜙(𝑠𝑡+1); 𝜃𝐼

𝜙 𝑠𝑡+1 = 𝑓 𝜙 𝑠𝑡 , 𝑎𝑡; 𝜃𝐹

𝑟𝑡
𝑖 =

𝜂

2
𝜙 𝑠𝑡+1 − 𝜙(𝑠𝑡+1)

2

2

 

𝐿𝐹 𝜙 𝑠𝑡 , 𝜙 𝑠𝑡+1 =
1

2
𝜙 𝑠𝑡+1 − 𝜙(𝑠𝑡+1)

2

2

 policy gradient loss

if actions are discrete: softmax ML

under multinomial distribution

Predicting Forward Dynamics

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.



Prediction-based Exploration
Prediction Models: Random Networks

Random Network Distillation (RND)1,2

▪ Similar idea: predict something that is independent from the main task

▪ We use two neural networks:

1. A randomly initialized but fixed
neural network to transform a state
into a feature space: 𝑓 𝑠𝑡

2. A network መ𝑓 𝑠𝑡; 𝜃  that we train to predict
the same features as the fixed network

→ We want መ𝑓 𝑠𝑡; 𝜃 = 𝑓(𝑠𝑡)

▪ Intuition: Similar states have similar features

▪ And if we have already seen them, we should
also have a lower error on predicting them!

▪ We use an exploration bonus: 𝑟𝑖 𝑠𝑡 = መ𝑓 𝑠𝑡; 𝜃 − 𝑓 𝑠𝑡 2

2
 

15

1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.
2 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/


Prediction-based Exploration

Random Network Distillation (RND)

▪ Advantage of synthetic prediction problem:

▪ The fixed network makes the prediction target deterministic (bypassing issue #2)

▪ It is inside the class of functions that the predictor can represent (bypassing issue #3) if the predictor and the target 
network have the same architecture.

▪ Results:

▪ RND works well for hard-exploration problems
→ maximizing RND bonus finds half of the rooms in Montezuma’s Revenge

▪ Normalization is important! The scale of the rewards is tricky to
adjust given a random network as prediction target

→ Normalize by a running estimate of standard deviations of intrinsic return

▪ Non-episodic settings work better, especially in cases without
extrinsic rewards (the return is not truncated at game over and
intrinsic return can spread across multiple episodes)

16

1 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

Random Network Distillation



Exercise Sheet 11
ICM and RND
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Thank you for your attention!
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