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Exploration vs. Exploitation
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Exploration vs. Exploitation
Why and How

= Both definitions stem from the same problem:

Exploration: do things you haven’t done before
(in the hopes of getting even higher reward)
- increase knowledge

Exploitation: do what you know to yield highest reward
- maximize performance based on knowledge

Small, finite MDPs
(e.g., tractable planning,
model-based RL)

Multi-armed bandits Contextual bandits
(1-step stateless (1-step
RL problems) RL problems)

P

Large, infinite MDPs
(e.g., continuous spaces)

a»

theoretically tractable
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theoretically intractable

(illustration adapted from Sergey Levine’s CS285 class from UC Berkeley)
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Exploration vs. Exploitation
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lti-Armed Bandits and Regret

The multi-armed-bandit problem is a classic problem used to study the e St 2 i
exploration vs. exploitation dilemma Lroh ﬂ%y

Imagine you are in a casino with multiple slot machines, each configured

with an unknown reward probability: {l%

Under the assumption of an infinite number of trials:
What is the best strategy to achieve highest long-term rewards?

Our loss function is the total regret we might have by not select the optimal action up to the time step T:

Whatwe o er-action regret
| P g
Lp=E Z(e —Q(at)) > Nr(@a,
acEA \
what we should have been doing action-selection counter
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Exploration vs. Exploitation
Straightforward but usually bad: Greedy or e-greedy

= Greedy may select a suboptimal action forever
—> Greedy has hence linear expected total regret

= e-greedy continues to explore forever
with probability 1 — € it selects a = arg max Qr(a)
a

with probability € it selects a random action

€

= Will hence continue to select all suboptimal actions with (at least) a probability of il

- e-greedy, with a constant € has a linear expected total regret

= Option #2: be optimistic with options of high
uncertainty
Prefer actions for which you do not have a
confident value estimation yet
- Those have a great potential to be high-
rewarding!

This idea is called Upper Confidence Bounds

= Option #1: decrease € over course of training might work
It is not easy to tune the parameters
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Exploration vs. Exploitation
Upper Confidence Bounds (UCB1)

= |dea: estimate an upper confidence U;(a) for each action value, such that with a high probability we satisfy

Q(a) < Q¢(a) + U(a) Large N.(a) = small bound U,(a) (estimated value is
certain/accurate)

= Next, we select the action that maximizes the upper confidence bound:
Small N;(a) - large bound U;(a) (estimated value is

aY°® = argmax[Q, (a) + Uy(a)] uncertain)
a€eA
. - : — 4. . : :
The vanilla UCB1 algorithm uses p = t=*: / Derived from Hoeffding’s Inequality:
P(E[X] = X, + ) < e~ 2%
_ 2 lOg t UCB __ 2 lOg t t
Ui(a) = (@) and a;/“” = arg max Q(a) + N (o)

This ensures that we always keep exploring
But we select the optimal action much more often as t - o
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Exploration vs. Exploitation
Probability Matching via Thompson Sampling

We can also try the idea of directly sampling the action
= Select action a according to probability that a is the optimal action (given the history of everything we observed so far):
T[t(alht) = P[Q(a) > Q(a’);va, + a’l ht] 2.5 \

= Eyn, [H (a = argmax Q(a))] |

nnino

NNE NS
wmEE® |
VN W H D
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Probability matching via Thompson Sampling:
1. Assume Q(a) follows a Beta distribution for the Bernoulli bandit

As Q(a) is the success probability of 6

Beta(a, B) is within [0,1] ,and a and f relate to the counts of success/failure
2. Initialize prior (e.g., @ = B = 1 or something different/what we think it is) "0 0z 04 o5  os 1
3. At each time step t we sample an expected reward Q(a) from the prior Beta(a;, 5;) for every action

15

PDF

1k

0.5 H

We select and execute the best action among the samples: al = arg max Q(a)
a

4. With the newly observed experience we update the Beta distribution:
a; < a; + r;1[al’ = q;]
Bi < Bi + (1 —ml[af® = a;]
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Exercise Sheet 10
Bandits
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Prediction-based Exploration in Deep RL
ICM and RND
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Exploration in Deep RL
Intrinsic Rewards as Exploration Bonuses

= |Instead of r(s,a) we provide r*(s,a) = r(s,a) + B(N(s))
\

decreases with N(s)
= We can give this to any model-free agent!
= A general formulation looks like this:
r=rf+p 1}

B is a hyperparameter that adjusts the balance between exploitation and exploration
r¢ is called the extrinsic reward form the environment at time t
r} is called the intrinsic reward, i.e., the exploration bonus at time t

= The intrinsic reward is/can be inspired intrinsic motivation’ and we can transfer those findings to RL too:
Discovery of novel states
Improvement of the agent’s knowledge about the environment

1 Pierre-Yves Oudeyer and Frederic Kaplan: How can we define intrinsic motivation? 8th Intl. Conf. Epigenetic Robotics
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Prediction-based Exploration
Predicting Models: Forward Dynamics

= |dea of the forward dynamics prediction model:

The agent learns a parameterized function fy such that:

fo: (5S¢, ap) = Seiq

Derive a reward bonus based on the prediction error of the dynamics model
e(sp,ar) = If(se,ar) — St+1”%

Large prediction error: high bonus (as we encountered something unusual/unknown)
Low prediction error: low bonus (as we have seen this coming)

Our agent uses all the experience samples (s¢, a;, s¢4+1) collected so far and retrains its prediction model as it interacts
with the environment
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Prediction-based Exploration
Predicting Forward Dynamics

12

Deep Predictive Models'

Predicting high-dimensional state spaces (images) can become very difficult
Train a forward dynamics model in an encoding space ¢ (train an autoencoder):

for (@(se), ar) > d(s¢a1)

Normalize the prediction error at time T by the maximum error so far:

_ €t
e t - Fully Connected Layers
max e; A
st

7999999%:¢

Define the extrinsic reward accordingly (C is a decay parameter):
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The autoencoder can be trained upfront using images collected randomly or trained along with the policy and being
updated steadily.

1 Stadie, Levine, Abbeel: Incentivizing Exploration in Reinforcement Learning with Deep Predictive Models. 2015.
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Prediction-based Exploration
Predicting Forward Dynamics

Intrinsic Curiosity Module (ICM)’

13

MARIO WORLD TIME
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Instead of an autoencoder ICM trains the state space
encoding ¢ (s;) with a self-supervised inverse dynamics model

Motivation:

Predicting s;4+1 given (s, a;) is not always easy as many factors in
the environment cannot be controlled/affected by the agent

Popular example: imagine this tree with leaves

Such factors should not be part of the encoded state space as
the agent should not base its decision based on these factors

learn to explore in Level-1 explore faster in Level-2

v

Solution: Learn an inverse dynamics model g:

9: (¢(St)»¢(st+1)) = Qg

The feature space then only captures those changes in the environment related to actions that the agent takes, and ignores
the rest

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.
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Prediction-based Exploration
Predicting Forward Dynamics

Intrinsic Curiosity Module (ICM)’, given
= a forward model f with parameters 0y
= an inverse dynamics model g with parameters 6,
= and an observation (s¢, a;, S¢qq)

= The policy is jointly optimized as a whole:

min [—/1
0p,01.0F
re T}
t $
ICM ICM
W WY
S E ¢5(bt+1 M Ve > @t
Sp--"" ': -St41 \
\4® E / Fomwarg (ﬁ(éa ¢(‘=L+1
| OO,
Oit/' at¢+1 i ‘ ‘
Tf + T’i 7‘§+1 + ri+] at Si-i—l
14

a; = g(p(se), d(Se+1); 61)

‘ ¢(5t+1) = f(¢(se), as; OF)

= §||¢(St+1) ¢(St+1)||

if actions are discrete: softmax ML
under multinomial distribution

+ (1 —=B)L, + BLg]

- 1, - 2
Ly (‘P(St)» ¢(5t+1)) = 2 ||¢(5t+1) - ¢(St+1)”2

1 Deepak Pathak et al.: Curiosity-driven Exploration by Self-Supervised Prediction. ICML 2017.
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Prediction-based Exploration
Prediction Models: Random Networks

Comparison of Next-State Prediction with RND

Random Network Distillation (RND)'2

Next-State Prediction

= Similar idea: predict something that is independent from the main task oo
e 0it1 i+1 )
a; o= |y — g
= We use two neural networks: \_router  \_pnsorcron

e - Jitl

A randomly initialized but fixed
neural network to transform a state L&%ﬁ"d:ﬁé’é‘s -~ R . fi.f «-J
into a feature space: f(s;) a1

A network f(s;; 8) that we train to predict
the same features as the fixed network Random Network Distillation

9 We Want f(st; 0) — f(St) ENVIRONMENT FEATURES

a Oi41 fix1 o,
a; ri=|fir1— fit1
POLICY PREDICTOR ~
—— % fit1

= |ntuition: Similar states have similar features

And if we have already seen them, we should A
it CRRITIOR, - SRR . fify
also have a lower error on predicting them!

010171
POLICY POLICY
PARAMETERS % OPTIMIZER

O Gt T

= We use an exploration bonus: ri(s,) = ||f(ss; 8) — f(St)”z

1 Yuri Burda et al.: Exploration by Random Network Distillation. ICLR 2019.
2 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/
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https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/

Prediction-based Exploration
Random Network Distillation

Random Network Distillation (RND)
= Advantage of synthetic prediction problem:
The fixed network makes the prediction target deterministic (bypassing issue #2)

It is inside the class of functions that the predictor can represent (bypassing issue #3) if the predictor and the target
network have the same architecture.

= Results:

RND works well for hard-exploration problems
- maximizing RND bonus finds half of the rooms in Montezuma’s Revenge

Normalization is important! The scale of the rewards is tricky to l
adjust given a random network as prediction target

Normalize by a running estimate of standard deviations of intrinsic return

Non-episodic settings work better, especially in cases without
extrinsic rewards (the return is not truncated at game over and
intrinsic return can spread across multiple episodes)

1 https://openai.com/blog/reinforcement-learning-with-prediction-based-rewards/
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Exercise Sheet 11
ICM and RND
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