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Offline Reinforcement Learning
Discrete Batch-Constraint Q-Learning (BCQ)
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Offline Reinforcement Learning
Fully Offline Reinforcement Learning

§ Offline RL uses a dataset 𝒟 collected by some behavior policy 𝜋!
§ 𝜋! is potentially (or often assumed to be) unknown

§ 𝒟 is collected once and not changed during training
§ Transitions are sampled from 𝒟
§ No interaction with the MDP; Policy is deployed after being fully trained.

§ Policy and transitions are independent 
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Figure 1: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning (a), the policy ⇡k is updated
with streaming data collected by ⇡k itself. In the classic off-policy setting (b), the agent’s experience is appended
to a data buffer (also called a replay buffer) D, and each new policy ⇡k collects additional data, such that D is
composed of samples from ⇡0,⇡1, . . . ,⇡k, and all of this data is used to train an updated new policy ⇡k+1. In
contrast, offline reinforcement learning employs a dataset D collected by some (potentially unknown) behavior
policy ⇡� . The dataset is collected once, and is not altered during training, which makes it feasible to use large
previous collected datasets. The training process does not interact with the MDP at all, and the policy is only
deployed after being fully trained.

additional online interaction (Kumar, 2019; Fu et al., 2020). See Figure 1 for a pictorial illustration.
A number of recent works have illustrated the power of such an approach in enabling data-driven
learning of policies for dialogue (Jaques et al., 2019), robotic manipulation behaviors (Ebert et al.,
2018; Kalashnikov et al., 2018), and robotic navigation skills (Kahn et al., 2020).

Unfortunately, such data-driven offline reinforcement learning also poses major algorithmic challenges.
As we will discuss in this article, many commonly used reinforcement learning methods can learn
from off-policy data, but such methods often cannot learn effectively from entire offline data, without
any additional on-policy interaction. High-dimensional and expressive function approximation
generally exacerbates this issue, since function approximation leaves the algorithms vulnerable to
distributional shift, one of the central challenges with offline reinforcement learning. However,
the appeal of a fully offline reinforcement learning framework is enormous: in the same way that
supervised machine learning methods have enabled data to be turned into generalizable and powerful
pattern recognizers (e.g., image classifiers, speech recognition engines, etc.), offline reinforcement
learning methods equipped with powerful function approximation may enable data to be turned
into generalizable and powerful decision making engines, effectively allowing anyone with a large
enough dataset to turn this dataset into a policy that can optimize a desired utility criterion. From
healthcare decision-making support to autonomous driving to robotics, the implications of a reliable
and effective offline reinforcement learning method would be immense.

In some application domains, the lack of effective offline reinforcement learning methods has driven
research in a number of interesting directions. For example, in robotics and autonomous driving, a
rapidly growing research topic is the study of simulation to real-world transfer: training policies with
reinforcement learning in simulation and then transferring these policies into the real world (Sadeghi
and Levine, 2017; Tan et al., 2018; Chebotar et al., 2019). While this approach is very pragmatic (and
often effective), its popularity highlights the deficiency in offline reinforcement learning methods: if
it was possible to simply train policies with previously collected data, it would likely be unnecessary
in many cases to manually design high-fidelity simulators for simulation-to-real-world transfer. After
all, outside of reinforcement learning (e.g., in computer vision, NLP, or speech recognition), transfer
from simulation is comparatively much less prevalent, since data-driven learning is so effective.

The goal of this article is to provide the reader with the conceptual tools needed to get started on
research in the field of offline reinforcement learning (also called batch reinforcement learning (Ernst
et al., 2005; Lange et al., 2012)), so as to hopefully begin addressing some of these deficiencies. To
this end, we will present the offline reinforcement learning problem formulation, and describe some
of the challenges associated with this problem setting, particularly in light of recent research on deep
reinforcement learning and the interaction between reinforcement learning and high-dimensional
function approximator, such as deep networks. We will cover a variety of offline reinforcement
learning methods studied in the literature. For each one, we will discuss the conceptual challenges,
and initial steps taken to mitigate these challenges. We will then discuss some of the applications of
offline reinforcement learning techniques that have already been explored, despite the limitations of
current methods, and conclude with some perspectives on future work and open problems in the field.
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Offline Reinforcement Learning
Offline Policy Evaluation and Distribution Shift 

What we want to do: 

𝔼!~#", %~# 𝑟 + 𝛾𝔼$!~&($!|$,*), *!~#($!) 𝑄,(𝑠′, 𝑎
-) − 𝑄, 𝑠, 𝑎

&

What we would naively do: 

𝔼!~#". , %~'. 𝑟 + 𝛾𝔼$!~&($!|$,*), *!~#($!) 𝑄,(𝑠′, 𝑎
-) − 𝑄, 𝑠, 𝑎

&

§ State distribution shift:
§ Problem arises during test time 
§ Does not invalidate the learned strategy on the states in 𝒟 because unobserved states are never queried during training

§ Action distribution shift: 
§ Already problematic during training as inaccurate action values are used as bootstrapped targets
§ Can invalidate the learned strategy even on states in 𝒟
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Offline Reinforcement Learning
Policy-Constrained Methods

§ The problems arise because the maximizing action is selected without uncertainty considerations

𝜋/01 𝑠 = arg max* 𝑄, 𝑠, 𝑎

§ Define the admissible set of policies Π2 = 𝜋 𝑑 𝜋, 𝜋! ≤ 𝜖) where 𝑑 is a distance measure 

§ Consider a constrained policy improvement step

𝜋/01 = arg max#∈4" 𝔼[𝑄, 𝑠, 𝜋(𝑠) ]
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Policy-Constrained Offline RL
BCQ with Function Approximation – Discrete Case

§ Q-Learning:

min
,
(𝑟 + 𝛾 max

*!∈5($!)
𝑄, 𝑠-, 𝑎- − 𝑄,(𝑠, 𝑎))6

§ Let us define

𝐴2
789 𝑠 = 𝑎 ∈ 𝐴 𝑠 :

@𝜋! 𝑎 𝑠
max
*

@𝜋! 𝑎 𝑠
≥ 𝜖 ,

where 𝜖 ∈ [0,1] is the threshold parameter and @𝜋! an estimate for the behaviour policy

§ The constrained target is 𝑦 = 𝑟 + 𝛾 ⋅ max
*!∈5"

#$%($!)
𝑄 𝑠-, 𝑎′

§ 𝜖 = 1à behavioural cloning
§ 𝜖 = 0à Q-Learning

§ The learned policy is 𝜋 𝑠 = arg	max
*∈5"

#$%($!)
𝑄 𝑠, 𝑎
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Policy-Constrained Offline RL
Discrete BCQ
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Exercise Sheet 12
Discrete BCQ
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Thank you for your attention!


