

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 12: Offline Reinforcement Learning

Nico Meyer

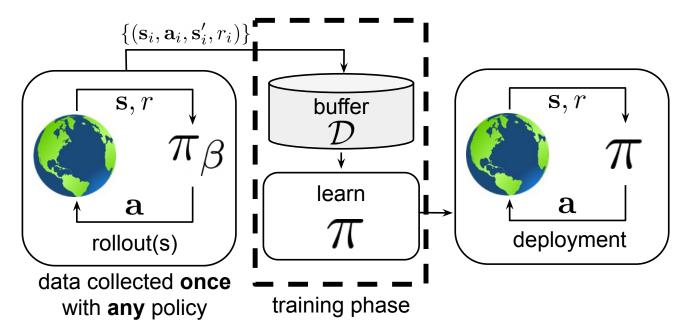
Overview

Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Discrete Batch-Constraint Q-Learning (BCQ)

Fully Offline Reinforcement Learning



- Offline RL uses a dataset \mathcal{D} collected by some behavior policy π_{β}
 - π_{β} is potentially (or often assumed to be) unknown
- \mathcal{D} is **collected once** and **not changed** during training
 - Transitions are sampled from D
 - No interaction with the MDP; Policy is deployed after being fully trained.
- Policy and transitions are independent

Levine et al.: "Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems"

Offline Policy Evaluation and Distribution Shift

What we want to do:

$$\mathbb{E}_{s \sim d_{\pi}, a \sim \pi} \left[\left(r + \gamma \mathbb{E}_{s' \sim p(s'|s,a), a' \sim \pi(s')} [Q_{\theta}(s',a')] - Q_{\theta}(s,a) \right)^2 \right]$$

What we would naively do:

$$\mathbb{E}_{s \sim d_{\pi_{\beta}}, a \sim \pi_{\beta}} \left[\left(r + \gamma \mathbb{E}_{s' \sim p(s'|s,a), a' \sim \pi(s')} [Q_{\theta}(s',a')] - Q_{\theta}(s,a) \right)^2 \right]$$

- State distribution shift:
 - Problem arises during test time
 - Does not invalidate the learned strategy on the states in D because unobserved states are never queried during training

Action distribution shift:

- Already problematic during **training** as inaccurate action values are used as bootstrapped targets
- Can invalidate the learned strategy even on states in $\mathcal D$

Policy-Constrained Methods

• The problems arise because the maximizing action is selected without uncertainty considerations

 $\pi_{new}(s) = \arg \max_a Q_{\theta}(s, a)$

- Define the admissible set of policies $\Pi_{\epsilon} = \{\pi \mid d(\pi, \pi_{\beta}) \leq \epsilon\}$ where d is a distance measure
- Consider a constrained policy improvement step

 $\pi_{new} = \arg \max_{\pi \in \Pi_{\epsilon}} \mathbb{E}[Q_{\theta}(s, \pi(s))]$

Policy-Constrained Offline RL

BCQ with Function Approximation – Discrete Case

• Q-Learning:

$$\min_{\theta} (r + \gamma \max_{a' \in A(s')} Q_{\theta}(s', a') - Q_{\theta}(s, a))^2$$

• Let us define

$$A_{\epsilon}^{BCQ}(s) = \left\{ a \in A(s) \colon \frac{\hat{\pi}_{\beta}(a|s)}{\max_{a} \hat{\pi}_{\beta}(a|s)} \ge \epsilon \right\},\$$

where $\epsilon \in [0,1]$ is the threshold parameter and $\hat{\pi}_{\beta}$ an estimate for the behaviour policy

- The constrained target is $y = r + \gamma \cdot \max_{a' \in A_{\epsilon}^{BCQ}(s')} Q(s', a')$
 - $\epsilon = 1 \rightarrow$ behavioural cloning
 - $\epsilon = 0 \rightarrow$ Q-Learning
- The learned policy is $\pi(s) = \underset{a \in A_{\epsilon}^{BCQ}(s')}{\arg \max Q(s, a)}$

Policy-Constrained Offline RL

Discrete BCQ

Algorithm 1 BCQ

- 1: Input: Batch \mathcal{B} , number of iterations T, target_update_rate, mini-batch size N, threshold τ .
- 2: Initialize Q-network Q_{θ} , generative model G_{ω} and target network $Q_{\theta'}$ with $\theta' \leftarrow \theta$.
- 3: for t = 1 to T do
- 4: Sample mini-batch M of N transitions (s, a, r, s') from \mathcal{B} .
- 5: $a' = \operatorname{argmax}_{a'|G_{\omega}(a'|s')/\max \hat{a}|G_{\omega}(\hat{a}|s') > \tau} Q_{\theta}(s',a')$
- 6: $\theta \leftarrow \operatorname{argmin}_{\theta} \sum_{(s,a,r,s') \in M} l_{\kappa} (r + \gamma Q_{\theta'}(s',a') Q_{\theta}(s,a))$

7:
$$\omega \leftarrow \operatorname{argmin}_{\omega} - \sum_{(s,a) \in M} \log G_{\omega}(a|s)$$

- 8: If t mod target_update_rate = 0: $\theta' \leftarrow \theta$
- 9: **end for**

Exercise Sheet 12

Discrete BCQ

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!