
Reinforcement Learning @FAU
Summer Term 2024

Alexander Mattick, Nico Meyer, Christopher Mutschler
2024-06-26 – Due 2024-07-02

Exercise 11

Time to Explore: DQN with RND and ICM

As you have learned from the lecture, for sparse reward problems where the agent has to thoroughly explore
the state space to get a glimpse of what his task is (sparse reward setting), exploration techniques like
ϵ-greedy are often not enough to ”stumble over” the desired goal conditions.

This is already the case for relatively simple problems like the MountainCar1 environment. In this envi-
ronment, the agent has to strategically accelerate a car back and forth to escape from a mountain valley
and arrive at the top of the mountain at the right (depicted in Figure 1). In the default implementation,
the reward function is Ra(s, s

′
) = −1 for every step until the episode is finished, i.e. after a maximum

of 200 time steps or the agent arrived at the goal. As it turns out, using value-function approximators
like DQN, this reward definition is not as sparse as it seems on first impressions (try to explain why this
might be the reason. Think about how the value estimates of visited vs. not-visited states change over the
course of training.). To convert the MountainCar environment into a genuinely challenging sparse-reward
problem, we wrote an environment wrapper inside env.py and changed the reward function to:

Ra(s, s
′

) = {
200.0, s′ is a goal-state

0.0, otherwise.
(1)

Your task is to implement Exploration by random network distillation (RND)2 and Curiosity-driven Explo-
ration by Self-supervised Prediction (ICM)3, two state of the art RL exploration methods. In the following,
we give a rough sketch of the algorithms and provide a more detailed, textual pseudo-code inside the code
skeletons. We also advise you to quickly look at the respective papers for more information.

In short, for both methods, the goal is to have some metric that encapsulates how often the agent has
already visited a certain state. Whereas in discrete state spaces, we could just keep count of state visitations
inside a table, for continuous state spaces this is harder to integrate.

RND The idea of RND is to use a randomly initialized, fixed target network and a second predictor
network, where the predictor learns to predict the outputs of the target network based on states as input.
Even though the target network outputs are random, they are deterministic (stay the same) for every state
input. This way, the more often the agent has already visited a certain state, the better the predictor will
be able to approximate the target network outputs. In RND, the intrinsic reward is then defined as the
error between the prediction and the target outputs.

1https://gymnasium.farama.org/environments/classic_control/mountain_car/
2https://openreview.net/forum?id=H1lJJnR5Ym
3https://pathak22.github.io/noreward-rl/

Figure 1: The MountainCar-v0 OpenAI gym environment.

https://gymnasium.farama.org/environments/classic_control/mountain_car/
https://openreview.net/forum?id=H1lJJnR5Ym
https://pathak22.github.io/noreward-rl/


Reinforcement Learning @FAU
Summer Term 2024

Alexander Mattick, Nico Meyer, Christopher Mutschler
2024-06-26 – Due 2024-07-02

(a) Vanilla DQN (b) RND (c) ICM

Figure 2: Example return plots for this exercise.

ICM The goal of ICM is to quantify the novelty of states through a forward model. Based on the current
observation and the performed action, ICM predicts the next observation and uses the error between the
actual next observation, and the prediction as an intrinsic exploration reward. Because learning a forward
model inside the observation space has many drawbacks (think about visual observations), ICM performs
the forward prediction inside a learned feature space. To do this, a feature network encodes the observations
into a low-dimensional feature representation. A second network, the so-called inverse-dynamics network,
is trained to predict the feature encoding of the next observation based on the feature encoding of the
current observation and the performed action. This way, only action-relevant features are learned and
stochastic effects outside the agent’s control (think about the noisy TV problem) are filtered out. Finally,
the forward-dynamics network predicts the feature vector of the next observation based on the encoding of
the current observation and the performed action. Similar to RND, we use the error as an intrinsic reward.

Programming Tasks

1. Implement RND and ICM inside exploration.py. You will have to implement the calculate_loss(...)
and calculate_reward functions of both exploration modules.

2. Run your implementation and verify that they are working. For reference, Figure 2 displays result
plots of our solution.

Some Notes

• It can happen that sometimes the methods do not converge. This is due to the fact that these
methods are highly dependent on good hyper-parameters. For example, if the RND predictor is
too powerful and learns to fast, the intrinsic reward becomes non-informative very quickly. This
is equally true for ICM. We tried our best to find reliable hyperparameters, but RL can be tricky
sometimes. ,

• If your implementation arrives at the goal sometimes, it is probably correct.

• To highlight the exploration capabilities of RND and ICM, we only use ϵ-greedy for vanilla DQN.


