
Reinforcement Learning @FAU
Summer Term 2024

Alexander Mattick, Nico Meyer, Christopher Mutschler
2024-05-15 – Due 2024-05-28

Exercise 5

Model-free Control

Two weeks ago you implemented a simple gridworld MDP that adheres to the OpenAI Gym interface.
This week we will put your implementation into practice and try to solve it using SARSA and Q-Learning.

1 SARSA and Q-Learning

You can find the entry point inside the td_control.py file. We provide to you a sample implementation of
the environment from Exercise 3 in gridworld.py. Visualization and testing helpers can be found inside
utils.py. The actual TD-control routines can be found in the agents folder.

• base_agent.BaseAgent: The base class, which has the __init__ constructor and an action function,
which returns the ϵ-greedy action for a state s.

• sarsa.SARSAAgent and qlearning.QLearningAgent: The SARSA and Q-learning agent classes with
methods learn and update_Q. Both inherit from BaseAgent.

Remark: You are free to implement the inner workings of your agents as you wish. For the visualization
tools to work you will however have to work with the provided Q-value member variable Q, which is a
numpy array of shape [grid height, grid width, num actions]. Alternatively, it should be easy to adjust
the visualization helper functions as needed.

Programming Tasks:

1. ϵ-greedy actions: Implement the action function inside BaseAgent, which should return a random
action with a probability of ϵ, and the greedy action w.r.t the current Q-value estimates of state s
with a probability of 1− ϵ.

2. SARSA, implementation to be done in SARSAAgent, can be run with the flag -agent=sarsa:

• Q-value update: Implement the Q-value update rule of SARSA for a tuple (s, a, r, s′, a′)
inside update_Q.

• Learning loop: Implement the training loop of the SARSA agent, which should interact with
the environment for n_timesteps steps.

3. Q-learning, implementation to be done in QLearningAgent, can be run with the flag -agent=qlearning:
SARSAAgent, can be run with the flag -agent=sarsa:

• Q-value update: Implement the Q-value update rule of Q-learning for a tuple (s, a, r, s′)
inside update_Q.

• Learning loop: Implement the training loop of the Q-learning agent, which should interact
with the environment for n_timesteps steps.

Test your implementation and verify that it’s working correctly. Feel free to play around with the hyper-
parameters (for details see td control.parse function). You can see a sample result in Fig. 1.

2 CliffWalking

In order to highlight the difference between SARSA and Q-Learning, try to replicate the famous CliffWalking
environment by extending the gridworld implementation (Fig. 2). For simplicity, we replicated this envi-
ronment inside a 4× 4 grid with only two cliff cells between start and finish.



Reinforcement Learning @FAU
Summer Term 2024

Alexander Mattick, Nico Meyer, Christopher Mutschler
2024-05-15 – Due 2024-05-28

Figure 1: Sample output for a Q-Learning agent on the gridworld environment (200k training steps, ϵ = 0.4,
γ = 0.9, α = 0.05). States (1, 2) and (2, 2) should actually have a 50−50 policy for actions down and right,
which they don’t have due to rounding error. Results can also be quite sensitive to hyper-parameters and
a correct implementation can still lead to confusing results sometimes. Especially the Q-values for states
far away from the terminal states vary over runs, due to involved stochasticity.

Programming Tasks:

1. CliffWalk: Implement a 4 × 4 version of the CliffWalk environment inside gridworld.py. Make
sure, that a small negative reward is returned for each step (and test what happens without).

2. Train a SARSA and Q-Learning agent on this environment. The environment can be run with the
flag -env=cliffwalk

• What is the explanation for the difference in learnt policies and Q-functions?

• How does this relate to SARSA being considered an on-policy method and Q-Learning being
an off-policy method?

Figure 2: The CliffWalking environment. We will replicate a 4× 4 version of this setup in our implemen-
tation. Each non-terminal state returns a small negative reward to encourage short paths.


