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Exercise 6

Value Function Approximation

1 Deep Q-Networks

We now want to implement DQN using PyTorch and find good policies for discrete action space environ-
ments. We will test our agent on the famous CartPole environment.

Programming Tasks:

1. Neural Network Architecture The neural network that will be used as a Q-function approximator
has to be defined inside the DQNNetwork class constructor. Your task is to define a network which:

• maps from num_obs (dimensionality of input observations) to num_actions (one Q value for
every possible action)

• uses torch.nn.Linear with ReLU/Tanh activations

• has a torch.nn.Linear layer as output layer (try to think about why this is)

You can decide by yourself how many layers and which intermediate feature dimensionality you use,
but for easy environment like CartPole one or two layers and an intermediate dimensionality of 64
or 128 is more than enough (and often also works much better and converges faster).

You can either pass inputs to the network manually through every layer or wrap all you layers into
a torch.nn.Sequential object and do this in one call.

2. Epsilon Decay DQN addresses exploration with the use of ϵ-greedy policies, which performs a
random action with probability ϵ, whereas the greedy action w.r.t the approximated Q-function is
taken with probability 1− ϵ . Implement the function epsilon_by_timestep, which returns:

• epsilon_start for timestep == 0

• epsilon_end for timestep >= frames_decay

• a linearly decaying ϵ for 0 < timestep < frames_decay

3. Action Prediction The DQN class represents the DQN agent. Based on the observation returned
by the gym environment and a specific epsilon value the agent should either:

• perform a random action with probability epsilon

• perform the action which has maximum Q-value for the given observation. For this you will
have to wrap the observation (np.array) into a torch.Tensor, bring it into batch format, pass
it through the network, and return the index of the network outputs which has maximum value.

4. Replay Buffer For off-policy methods like DQN to work it has been shown that it can be beneficial
to use a replay buffer, with which past experience of the agent can be stored and reused during
training. As an exercise you should implement the __init__, __len__, put and get methods inside
the ReplayBuffer class.

• You can decide yourself how you want to implement this. One way would be to hold a list of
tuples (obs, action, reward, next_obs, done) inside a list or collections.deque object
and enforce a maximum size on it (delete oldest entries first once your replay buffer is full).

• get should return five lists, i.e. obs_lst, action_lst, ... Should you decide to store entries as
a list of tuples, you can convert them into said list format via zip(*tuple_list).

• In get batch_size random entries from you buffer should be returned. Use random.sample(...)
for this.

• Don’t forget to implement the __len__ function which returns the number of entires inside
your replay buffer.
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Figure 1: (left) without target network; (right) with target network; Sample reward plot we were able to
achieve with our implementation on CartPole (hyperparameters as provided in skeleton, Linear(128) →
ReLU → Linear NN architecture)

5. MSBE In order to train your DQN method you will need to calculate the mean-squared Bell-
man error (MSBE) inside DQN.compute_msbe_loss and return it. More specifically, for a set D of
batch_size transitions sampled from the replay buffer the MSBE is defined as:

L(ϕ,D) = E(s,a,r,s′,d)∼D[(Qϕ(s, a)− (r + γ(1− d)max
a′

Qϕ(s
′, a′)))2],

where we’ve used a Python convention of evaluation True to 1 and False to 0.

• In order to select the Q-values from a batch tensor calculated from a batch of states, which
correspond to the actions taken in the sampled transitions, you can use torch.gather. Alter-
natively you can use a loop.

• If s′ is a terminal state its Q-values are per definition zero. Take this into account during your
calculations.

6. Target Network Your network should now already be able to learn on easier problems. For more
challenging problems it has been shown that it can be beneficial to use a fixed target network with
which the TD target values (the r + γmaxa′Q term above) are calculated.

(a) Create a second DQNNetwork object inside the DQN class constructor.

(b) Calculate the TD target values using only this network.

(c) Synchronize it on construction and periodically during training
using target_net.load_state_dict(main_net.state_dict()).

Try to play around with hyperparameters a little bit. You might also try out training your DQN in a little
bit more challenging environments. Have a look at the documentation to get an overview.

https://gymnasium.farama.org/environments/classic_control/
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