
Reinforcement Learning @FAU
Summer Term 2024

Alexander Mattick, Nico Meyer, Christopher Mutschler
2024-06-05 – Due 2024-06-11

Policy-based Reinforcement Learning

1 Vanilla Policy Gradient (VPG)

In this exercise we will implement the VPG method. The idea of VPG in deep reinforcement learning is to
represent the policy using a deep neural network which is parameterized by its internal weights. Remember
that it is an on-policy method. The policy gradient w.r.t to the model parameters is defined as:

∇θJ(θ) = ∇θEπ[Q
π(s, a) lnπθ(a|s)]

= ∇θEπ[Gt lnπθ(a|s)]

Programming Tasks:

1. Network Architecture Similar to the last exercise about DQN it makes sense to begin with
defining the neural network architecture inside ActorNetwork. You can either decide to use a
torch.nn.softmax output layer and treat outputs directly as action probabilites, or work on logit
outputs.

Don’t get too fancy with your network. Even using two torch.nn.Linear layers with ReLU/Tanh
activation should converge quite nicely on easy environments like CartPole.

2. Transition Memory Even though it is not strictly necessary to do so, we will use a transition
memory to store experience episodes of the actor. This will make things cleaner and allow us to
expand the framework to more sophisticated methods in the next exercise.

(a) put expects an observation, action, reward and log-probability of the action taken and should
store them for later processing.

(b) finish_trajectory will be called once an episode is over. It should calculate the return at all
the timesteps of the episode using compute_returns and store them for later.

(c) get should return stored data in the form of five lists (observations, actions, rewards, log-
probabilities and returns).

(d) clear should delete all entries inside the transition memory.

3. Return Calculation Next up you will have to implement the compute_returns function, which
should yield returns for every timestep of an episode based on a list of rewards and the discount
factor γ. Remember that the return at timestep t of an episode is defined as Rt(τ) =

∑T
k=t γ

k−trk

4. Time for Action Continue with implementing the actors predict function.

First feed your observation through the actor network, yielding action probabilities or preference
logits.

Sample an action according to the probability distribution outputted by the actor network and
calculate the log probability for that action (Hint: PyTorch provides prebuilt distribution classes,
e.g. torch.distributions.Categorical for discrete actions). Return the action (as well as the log
probability if train_returns == True).

5. Loss Function Write code for the function calc_actor_loss which calculates the ”loss” function
(more objective function) as described above. (Hint: Because you can use the autograd capabilities
of PyTorch to compute your gradient you only have to calculate the expectation term. To compute
the gradient you can then use loss.backward()).

6. Training Loop Continue with implementing the training loop inside the VPG.learn function.

(a) Start by resetting the environment and saving the first observation into a variable.

(b) For every iteration, sample an action from your actor, take a step inside the environment with
that action and save the transition inside the TransitionMemory.



Reinforcement Learning @FAU
Summer Term 2024

Alexander Mattick, Nico Meyer, Christopher Mutschler
2024-06-05 – Due 2024-06-11

Figure 1: Sample reward plot we were able to achieve with our implementation on CartPole (hyperparam-
eters as provided in skeleton, Linear(128) → ReLU → Linear → ReLU NN architecture). The results are
strongly hyperparameter-related.

(c) Once you reach a terminal state reset your environment and finish the trajectory using the
finish_trajectory function of the TransitionMemory you previously implemented.

(d) Once you recorded enough episodes (see episodes_update attribute) calculate the loss and
optimize the ActorNetwork using PyTorch autograd. Note: Because VPG is an on-policy
method, transitions inside the memory can only be used for one optimization step.


