

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Lecture 1: Introduction to RL

Christopher Mutschler

Class Logistics

- We (will start with) use StudOn for main communication (forum + messages, announcements)
- If you have any questions, you can also write to

Chris christopher.mutschler@iis.fraunhofer.de

Alex alexander.mattick@iis.fraunhofer.de

Nico nico.meyer@iis.fraunhofer.de

If we will ever use a password somewhere, it will be FAU_RL_2024

Syllabus

Week	Lecture		Exercises		
1.	17.04.	Intro to RL, MDPs	23.04.	MDPs	TA: Nico
2.	24.04.	Dynamic Programming (lecture starts 8:30!)	30.04.	DP	TA: Alex
3.	01.05.		07.05.	OpenAl Gym, PyToch-Intro	TA: Alex
4.	08.05.	Model-free Prediction	14.05.	TD-Learning	TA: Nico
5.	15.05.	Model-free Control	22.05.	Online-Live Programming Instruction	TA: Alex+Nico
6.	22.05.	Online-Live Programming Instruction	28.05	TD-Control	TA: Nico
7.	29.05.	Value Function Approximation	04.06.	DQN	TA: Nico
8.	05.06.	Policy-based RL #1	11.06.	VPG	TA. Alex
9.	12.06.	Policy-based RL #2	18.06.	A2C	TA: Nico
10.	19.06.	Exploration-Exploitation, Regret, Bandits	25.06.	Multi-armed Bandits	TA: Alex
11.	26.06.	Exploration in Deep RL, Intrinsic Motivation	02.07.	RND/ICM	TA: Alex
12.	03.07.	Model-based RL with Discrete Actions	09.07	MCTS	TA: Alex
13.	10.07	Offline RL	16.07.	BCQ	TA: Nico
14.	17.07.	Guest Lecture (T.B.D.) Course Wrap-Up, Evaluation Results			

Syllabus

Tips & Tricks: How to survive this class

- Play with the Jupyter notebooks (if we provide them) and exercise code
- Attend the classes, follow the content, and ask questions
- Attend the exercises and implement them

- ...one more thing
 - This is not a class to obtain 5 ECTS "as easy as it might be"

Exam

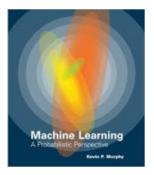
- Currently, the plan is to have **a written** exam.
- Final scheduling and logistics of the exam will be done around June/July
 - Exam will (most likely) take place in the first examination period! (tentative: **31.07.2023**)
- The exams will cover topics from both **lectures** and **exercises**
 - Exams will focus on **basic understanding** of concepts
 - Exams will have **theoretical parts** (but we will not include proofs)
 - Exams will focus on **practical aspects** (i.e., implementation w.r.t. exercise content)
- Exam is in English (in the unlikely case of oral exams we can also do it in German)

What's your study program?

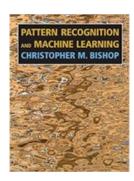
https://www.menti.com

Prerequisites

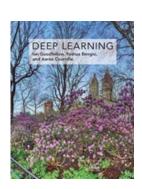
- What pre-requisites do we expect?
 - Analysis/Calculus
 - Multivariate Statistics
 - Machine Learning, Deep Learning
 - Python (to get used to the exercises)
- How can you get them?
 - You attended the recommended basic lectures: MLTS, Pattern Recognition, Deep Learning
 - Or/And dive into one of those books (better today than tomorrow):



Kevin Murphy: Machine learning; a probabilistic perspective.



Christopher Bishop: Pattern Recognition and Machine Learning

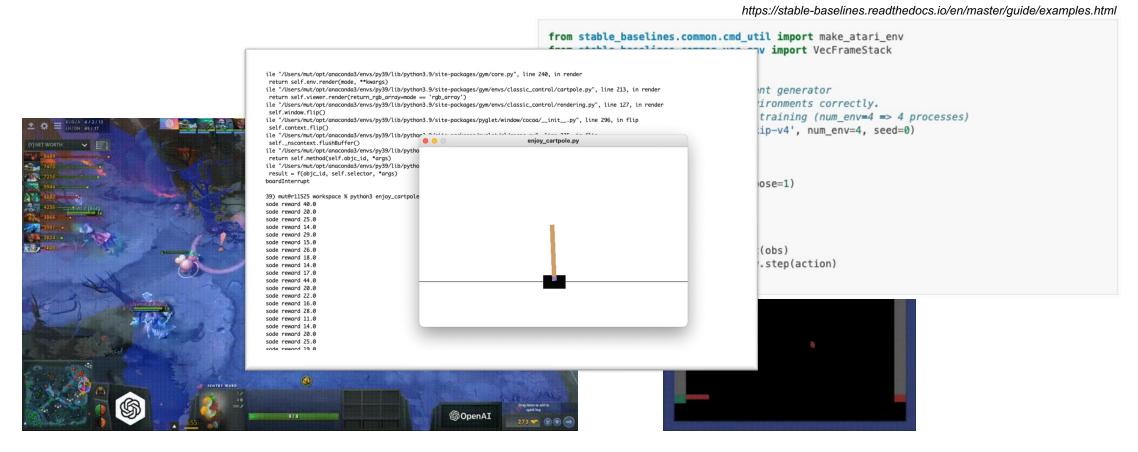


Do not be so casual about it!

Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning

You will find RL literature in Lecture 1.02 (later today)

Playing games with RL



https://www.youtube.com/watch?v=lc1fl5bdZdA

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Also watch the nice marketing video on AlphaGo: https://www.youtube.com/watch?v=I2WFvGl4y8c

Finding multi-agent soccer strategies with RL

https://www.youtube.com/watch?v=F8DcgFDT9sc

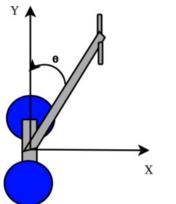
see also: https://github.com/google-research/football

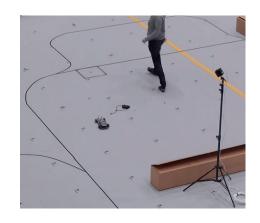
Controlling robots with RL

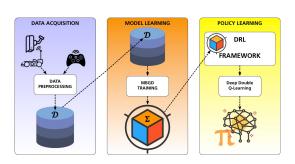
https://www.youtube.com/watch?v=0JL04JJjocc

https://www.youtube.com/watch?v=W_gxLKSsSIE

Controlling robots with RL



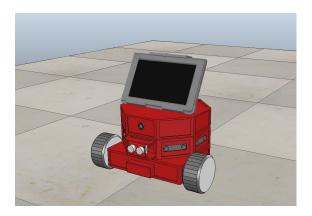




Deep Reinforcement Learning for On-line Collision-free Trajectory Planning in Dynamic Environments

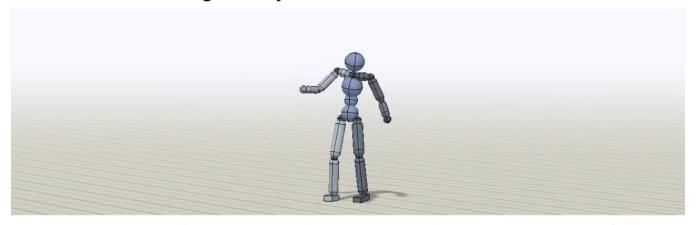
L. Butyrev, G. Kontes, T. Edelhäußer, C. Mutschler

Submitted to ICRA 2019



Advanced robot control in simulation

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills



Xue Bin Peng¹, Pieter Abbeel¹, Sergey Levine¹, Michiel van de Panne² ² University of British UBC ¹ University of California Columbia

https://www.youtube.com/watch?v=vppFvq2quQ0

Advanced robot control in reality

https://www.youtube.com/watch?v=x4O8pojMF0w

Advanced robot control in reality

https://www.youtube.com/watch?v=8RILnqPxo1s

https://www.youtube.com/watch?v=-e1_QhJ1EhQ

Driving cars with RL

https://youtu.be/0IWjE_8xj6Q

Path planning/navigation

https://www.youtube.com/watch?v=v5I-jPsAK7k

https://www.youtube.com/watch?v=H7Ym3DMSGms

Practical Implementations

Energy efficiency at Google's data centers

- Every 5 minutes, AI draws snapshots of data center cooling system through thousands of sensors
- Information fed into deep neural network, →defines optimal action to reduce energy usage while keeping data center reliable
- Actions verified by second system and then implemented
- Significant energy and cost savings achieved

Optimizing Rail Network with RL

- In case of unexpected events, trains need to be redirected in real time
- Ensure optimal capacity planning and traffic management in real time
- RL trained with real data and then further improved with millions of simulations
- Through optimized capacity planning and traffic management
 - → higher train frequencies
 - → delays can be better avoided

Ballons steering in stratosphere

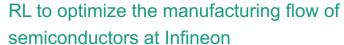
- Ballons that autonomously operate in stratosphere for months serving various purposes
- Complex steering involves considering cues like wind speed, visibility, solar elevation, and (imperfect) weather forecasts
- RL trained with millions of simulated flight hours to make optimal real-time decisions
- RL surpasses previous algorithms and withstands natural diversity

Source: https://www.instadeep.com/2023/04/instadeep-explores-the-benefits-of-deep-reinforcement-learning-technology-in-transportation-at-interchange-event/

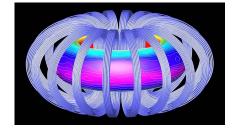
Source: https://blog.x.company/drifting-efficiently-through-the-stratosphere-using-deep-reinforcement-learning-c38723ee2e90

Source: https://deepmind.google/discover/blog/safety-first-ai-for-autonomous-data-centre-cooling-and-industrial-control/

Practical Implementations



- RL-driven optimization of semiconductor manufacturing flow
- RL agent automates order dispatching in wafer fabrication
- Wafers automatically directed specific equipment for processing, considering limited capacity and storage space
- Ensures smooth flow with minimal delays
- Outperformed traditional heuristic methods



Optimizing nuclear fusion with Deep RL at Swiss Plasma Center in Lausanne

- Utilization of RL for precise control of plasma (heated hydrogen) in tokamak for nuclear fusion
- Plasma is confined within a vacuum room with magnetic coils
- Plasma instability requires constant adjust-ment of magnetic coils & other conditions
- RL optimizes adjustments considering multiple conditions simultaneously
- Potential clean energy source

RL to solve American Airlines inventory control & overbooking problems

- Utilization of RL to manage overbookings
- Considers multiple factors to maximize revenue and minimize bumping costs
- Ensures flights remain full despite cancellations
- RL agent surpasses traditional methods, yielding close to maximum profits per flight

Source: https://www.sciencedirect.com/science/article/pii/S0007850618300659?via%3Dihub Sources: https://deepmind.google/discover/blog/accelerating-fusion-science-through-learned-plasma-control/; https://www.nature.com/articles/s41586-021-04301-9

Source: https://arxiv.org/pdf/1902.06824.pdf

Practical Implementations

RL for inventory optimization and shortened lead times at Zara

- Al-driven system optimizes production and supply chain
- RL agent leverages sales data, customer feedback, and social media trends to predict demand
- RL-driven recommendations allow optimization of inventory levels due
- Shortened lead & delivery times enhance customer satisfaction by ensuring goods are available when needed

Source: https://www.tokinomo.com/blog/artificial-intelligence-in-retail

- Farmers must balance multiple variables for optimal crop production, e.g., weather, fertilization, & soil conditions
- RL agent simultaneously considers various factors to provide recommendations for optimal crop management
- Facilitates reaching production objectives while optimizing resource utilization
- Open-source RL environment provided by Inria centre at the University of Lille

Source: https://arxiv.org/pdf/2207.03270v1.pdf

Utilization of deep RL to optimize energy costs in a flexible production machine

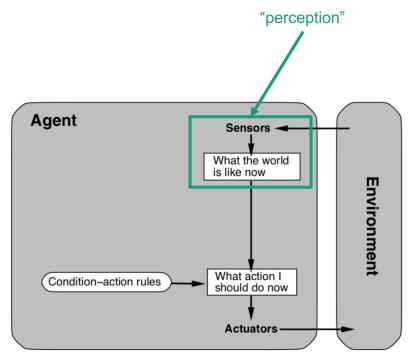
- RL employed to ensure most effective control policy for production machines considering varying framework conditions (e.g., energy prices)
- Deep learning architecture forecasts load profiles of future manufacturing schedules from past production time series
- RL algorithm trained to optimize machine load and speed for long-term energy cost reduction

Source; https://www.scientific.net/AMM.882.96.pdf

What are "autonomous systems"?

- **Autonomous Agent (Simple Reflex Agent)**
- An Autonomous Agent is **anything** that:
 - Perceives its environment via sensors
 - Acts on it with actuators
 - Operates without any interference (autonomously)

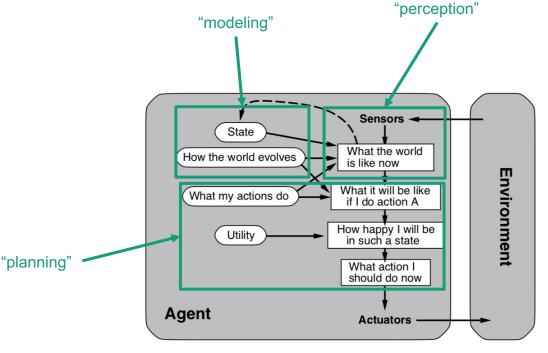
→ Percept & Act



Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A Modern Approach. Malaysia; Pearson Education Limited.

What are "autonomous systems"?

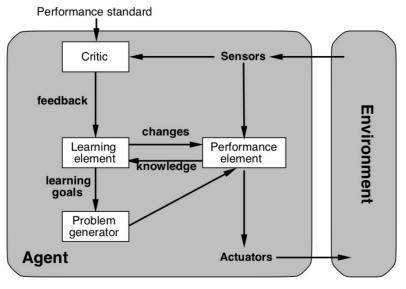
- Intelligent (Utility-based) Agent
- An intelligent agent is anything that:
 - Perceives its environment via sensors
 - Acts on it with actuators
 - Operates without any interference (autonomously)
 - Directs its activity towards achieving goals or maximizing a utility function
- → Percept & Plan to Control



Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A Modern Approach. Malaysia; Pearson Education Limited.

What are "autonomous systems"?

- Learning Agent
- A learning agent is anything that:
 - Perceives its environment via sensors
 - Acts on it with actuators
 - Operates without any interference (autonomously)
 - Learns how to better achieve goals or maximize a utility function
- → Percept & Learn to Control (not necessarily separate)



Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A Modern Approach. Malaysia; Pearson Education Limited.

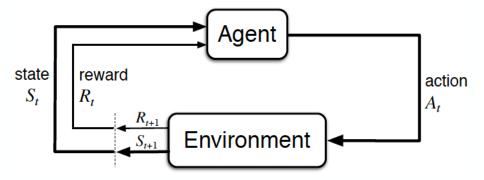
What are "autonomous systems"?

- **Autonomous Cars**
- Smart Homes/Buildings that adapt to occupants
- Intelligent traffic lights control
- Software trading agents
- Virtual assistants that manage appointments or answer emails automatically
- Recommender systems, e.g., for movies (Netflix), consumer products (Amazon), advertisements (Google), content (Facebook) or music (Spotify) recommendations
- Player Modelling and Content Generation in Computer Games

The RL Paradigm (reward hypothesis)

Do you agree with following statement?

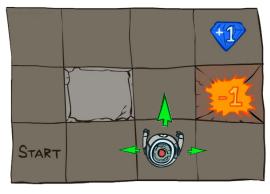
"All goals can be described by the maximization of expected cumulative **reward**."



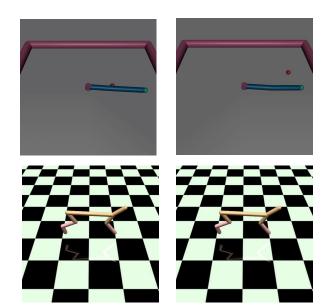
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Goals for different applications

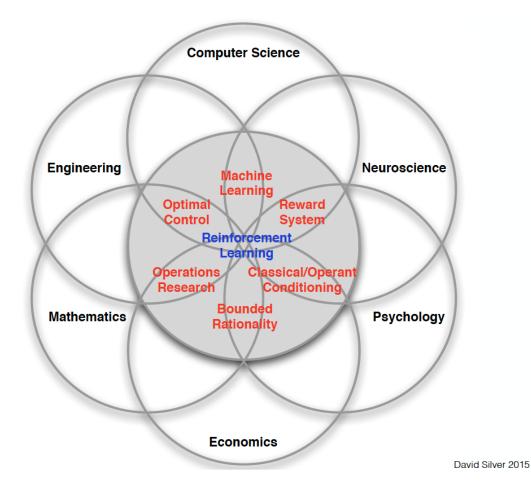
- Control a robot in the Gridworld
 - Getting to the treasure
 - Falling into traps
- Play videogames
 - Increasing the score
 - Decreasing the score
- Fly stunt maneuvers in a helicopter
 - Following desired trajectory
 - Crashing
- Humanoid walk
 - Forward motion
 - Falling over



http://ai.berkeley.edu/lecture_slides.html



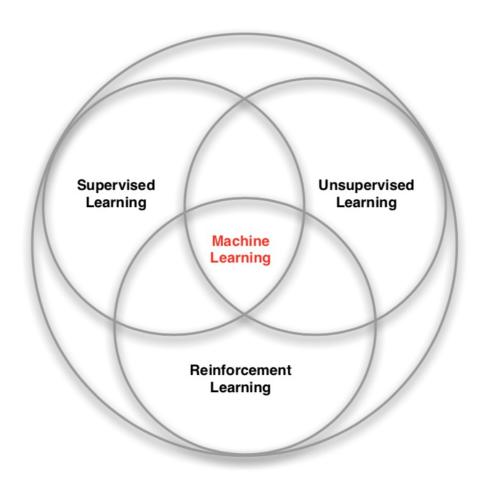
RL vs the world: the many faces of Reinforcement Learning



see also: https://www.youtube.com/watch?v=-63ysqT5nu0

RL vs other ML branches

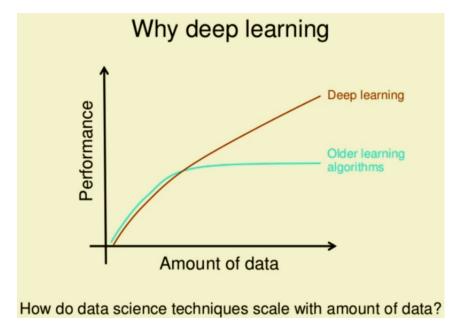
- No teacher/supervisor, only reward signals.
- Delayed feedback, not instantaneous (credit assignment problem).
- Learning by interaction between environment and agent over time.
- Agent's actions affect the environment:
 Actions have consequences!!!
 → non i.i.d.!
- Active Learning process: the actions that the agent takes affect the subsequent data the agent receives



see also: https://www.youtube.com/watch?v=-63ysqT5nu0

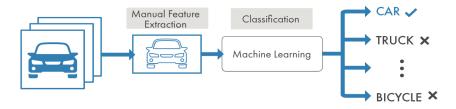
Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)

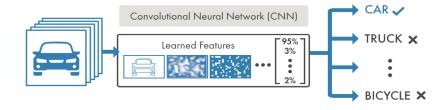


https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

MACHINE LEARNING



DEEP LEARNING



https://www.mathworks.com/discovery/deep-learning.html

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - **Hardware (CPU & Memory)**

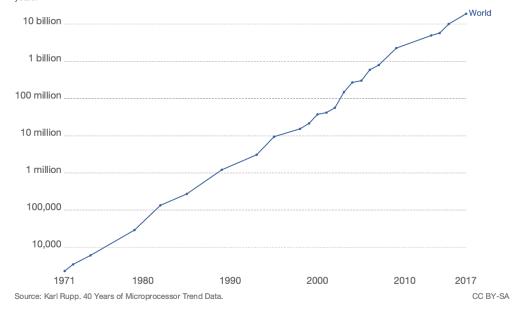
	OPENAI 1V1 BOT	OPENAI FIVE
CPUs	60,000 CPU cores on Azure	128,000 preemptible CPU cores on GCP
GPUs	256 K80 GPUs on Azure	256 P100 GPUs on GCP
Experience collected	~300 years per day	~180 years per day (~900 years per day counting each hero separately)

https://blog.openai.com/openai-five/

Moore's Law: Transistors per microprocessor

Our World in Data

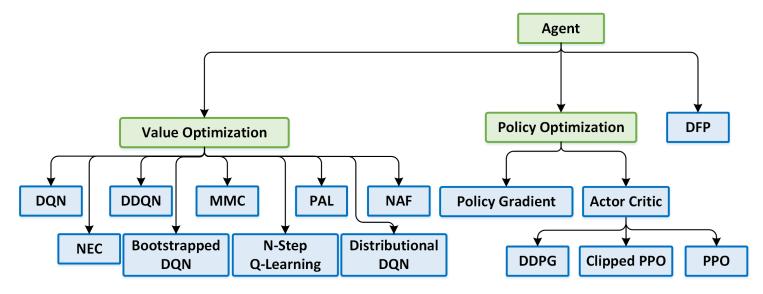
Number of transistors which fit into a microprocessor. This relationship was famously related to Moore's Law, which was the observation that the number of transistors in a dense integrated circuit doubles approximately every two years.



https://ourworldindata.org/technological-progress

Why RL now?

- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)
 - Deep RL



https://ai.intel.com/reinforcement-learning-coach-intel/

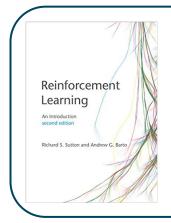
Why RL now?

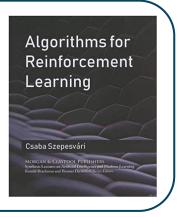
- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)
 - Deep RL
 - (Really good) Open Source Algorithm Implementations

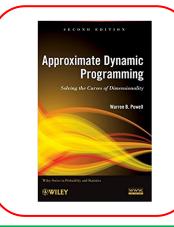
Why RL now?

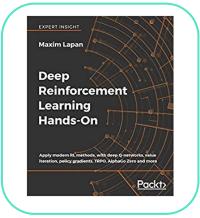
- Taking advantage of advances in:
 - Deep Learning Algorithms (DL)
 - Software for DL and RL
 - Hardware (CPU & Memory)
 - Deep RL
 - (Really good) Open Source Algorithm Implementations
 - You!

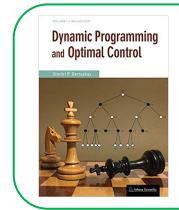
Literature

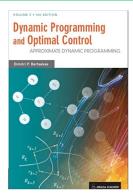


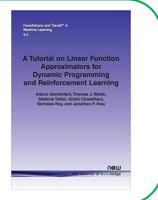








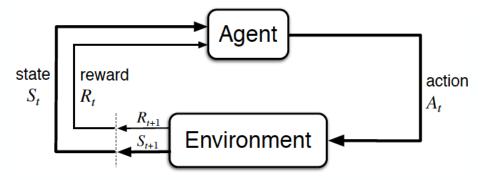




The RL Paradigm (revisited)

Do you agree with following statement?

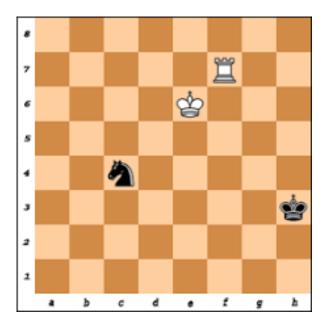
"All goals can be described by the maximization of expected cumulative **reward**."



Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Challenges of sequential decision making

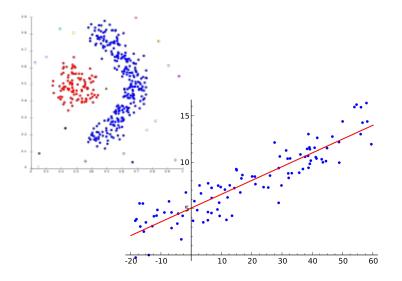
- Goal: select actions to maximize total future reward
- Actions may have long-term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - Financial investments
 - Refueling the helicopter
 - Game playing?



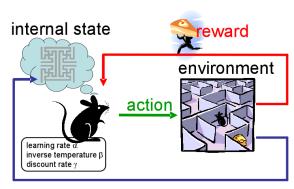
Challenges of understanding/adopting RL

Counter-Intuitive Visualization!!!

Supervised Learning



Reinforcement Learning

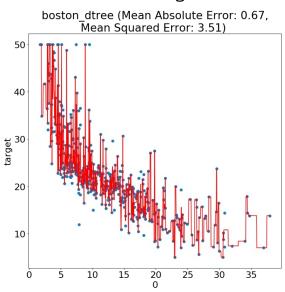


observation

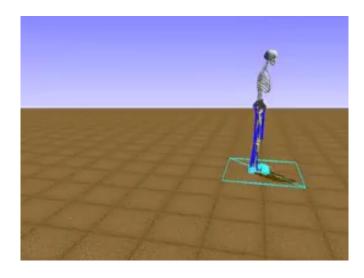
Challenges of understanding/adopting RL

Example: what went wrong here?

Supervised Learning



Reinforcement Learning



Challenges of understanding/adopting RL

Example: what went wrong here?

Supervised Learning

boston_dtree (Mean Absolute Error: 0.67, Mean Squared Error: 3.51)

50

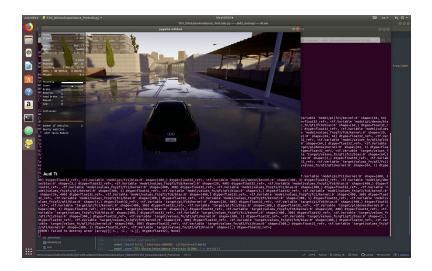
40

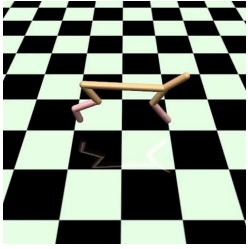
20

10

5 10 15 20 25 30 35

Reinforcement Learning

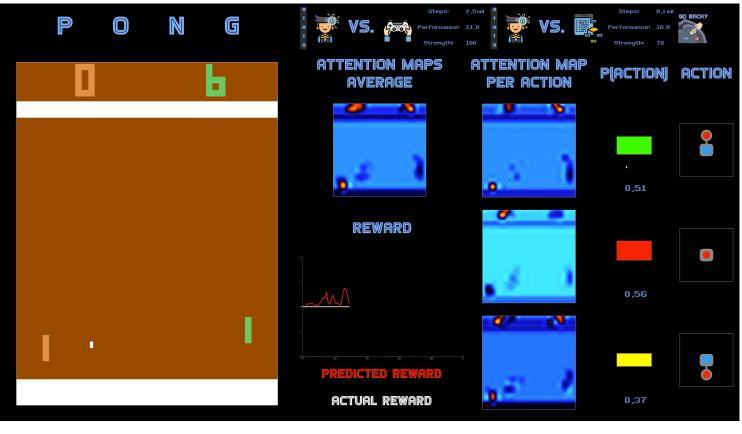




http://ai.berkeley.edu/lecture slides.html

Challenges of understanding/adopting RL

Idea: Saliency Maps



Challenges of understanding/adopting RL

Idea: explainable decision rules Safe Safe **Environment** Safety Proof **ANN-Policy Tree-Policy** Safe Check safety Constraint **Teacher** during evaluation **Dataset**

Challenges of understanding/adopting RL

- Simple algorithms don't scale!!!
 - k-means → time-series clustering
 - Linear/polynomial regression → house/car pricing prediction
 - Tabular Q-Learning/SARSA → very specialized applications

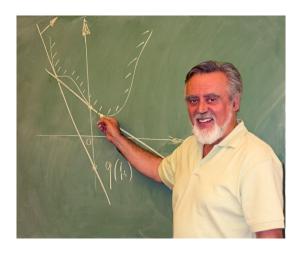
Myth vs. Reality

- 1. Al is RL
 - → NO! Many AI methods exist
- 2. RL can solve only games
 - → NO! We will see several examples
- 3. RL is just "fancy" search
 - → NO! We will compare to fancy search methods and see this
- 4. (Deep) RL can solve any problem, without any domain knowledge
 - \rightarrow NO!

Myth vs. Reality

 Deep RL can solve anything vs Deep RL does not work (see https://www.alexirpan.com/2018/02/14/rl-hard.html)

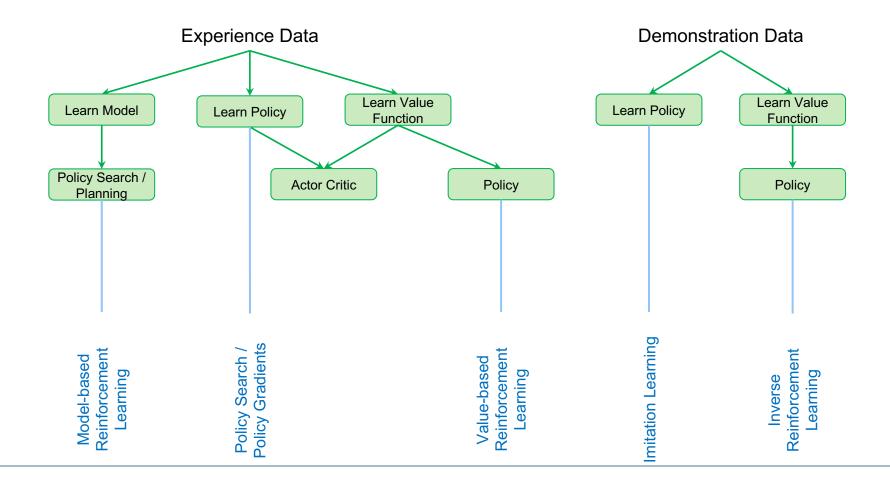
NO and NO!

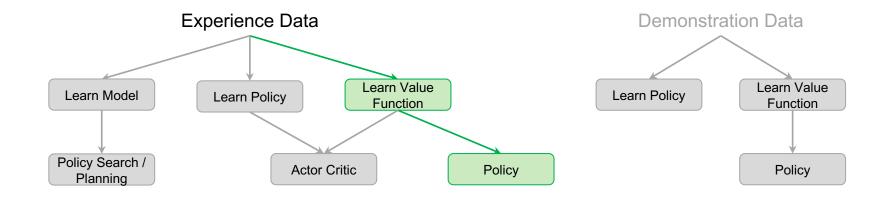


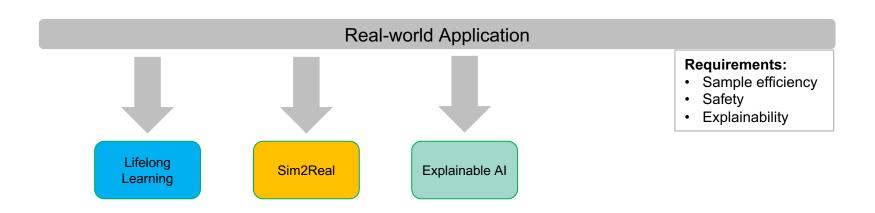
Bertsekas, 2019:

State of the art:

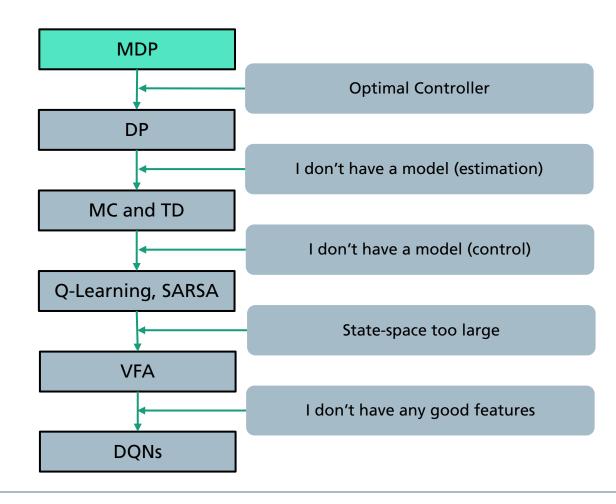
- Broadly applicable methodology: Can address a very broad range of challenging problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc
- There are no methods that are guaranteed to work for all or even most problems
- There are enough methods to try with a reasonable chance of success for most types of optimization problems
- Role of the theory: Guide the art, delineate the sound ideas



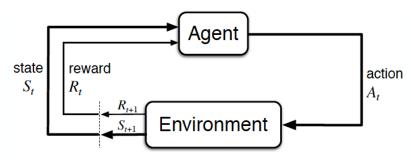




Overview



- Agent learns by interacting with an environment over many time-steps:
- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of an MDP (S, A, P, R, γ) :



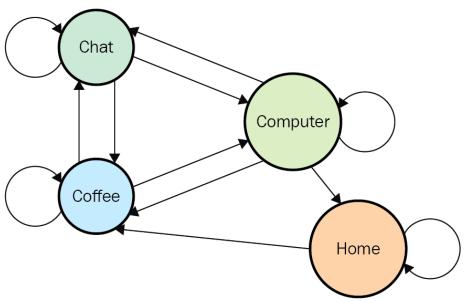
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:

If the interaction does stop at some point in time (T) then we have an *episodic RL problem*.

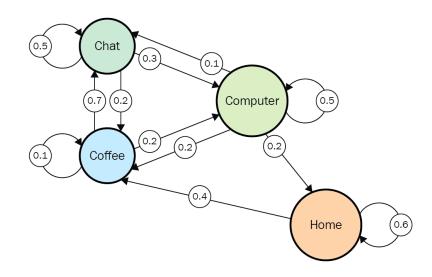
- At each step t, the agent:
 - is at state S_t,
 - performs action A_t,
 - receives reward R_t.
- At each step t, the environment:
 - receives action A_t from the agent,
 - provides reward R_t,
 - moves at state S_{t+1} ,
 - increments time $t \leftarrow t + 1$.

- Markov Process (MP)
 - Description of an MP (S, P):



Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Process (MP)
 - Description of an MP (S, P):

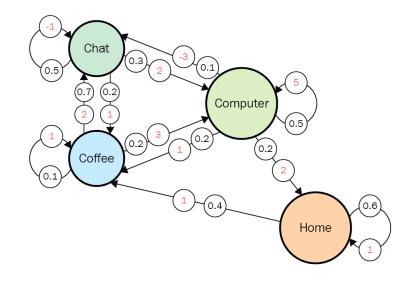


	Home	Coffee	Chat	Computer
Home	60%	40%	0%	0%
Coffee	0%	10%	70%	20%
Chat	0%	20%	50%	30%
Computer	20%	20%	10%	50%

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Reward Process (MRP)
 - Description of an MRP $(S, \mathcal{P}, \mathcal{R})$:
 - \mathcal{R} is a reward function:

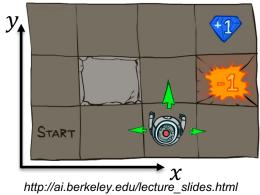
$$\mathcal{R}_S = \mathbb{E}[R_{t+1}|S_t = s]$$



	Home	Coffee	Chat	Computer
Home	1	1		
Coffee		1	2	3
Chat		1	-1	2
Computer	2	1	-3	5

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

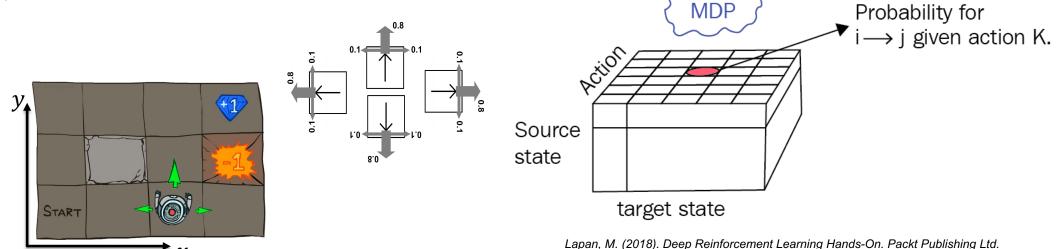
- Markov Decision Process (MDP)
 - Description of an MDP (S, A, P, R, γ) :



- Markov Decision Process (MDP)
 - Description of an MDP (S, A, P, R, γ) :

http://ai.berkeley.edu/lecture_slides.html

- State transition model:
 - A state transition probability matrix \mathcal{P} helps to model the true state transition function $T(S_{t+1}|S_t,A_t)$ of a real-world environment.
 - For each action $A^i \in \mathcal{A}$, we have a state transition matrix \mathcal{P}^{A^i} at any time-step t



- Markov Decision Process (MDP)
 - Description of an MDP (S, A, P, R, γ) :
 - State transition model:
 - A state transition probability matrix \mathcal{P} helps to model the true state transition function $T(S_{t+1}|S_t,A_t)$ of a real-world environment.
 - For each action $A^i \in \mathcal{A}$, we have a state transition matrix \mathcal{P}^{A^i} at any time-step t as follows:

Notes:

- Rows sum up to 1.0.
- \mathcal{P} could change over time.

$$\begin{bmatrix} \mathcal{P}_{11} & \cdots & \mathcal{P}_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix}$$

about the state space \mathcal{S}

History is the sequence of observations, actions, rewards:

$$H_t = O_0, A_0, R_0, O_1, A_1, R_1, O_2, \dots, O_{t-1}, A_{t-1}, R_{t-1}, O_t$$

- 3 different definitions of s_t :
 - (Full) Environmental state S_t^e (environment's private representation)
 - Includes all the data that the environment uses to select next observation and reward
 - Private to the environment, not visible, maybe irrelevant information
 - Agent state S_t^a (agent's private representation; actually used)
 - Private to the agent, history of observations, rewards, and actions
 - The agent constructs a state representation using a function of history $S_t^a = f(H_t)$ to decide on the next action
 - Information state (useful information from the history)
 - Basically, S_t^a with special constraints in $f(H_t)$

about the state space $\mathcal S$

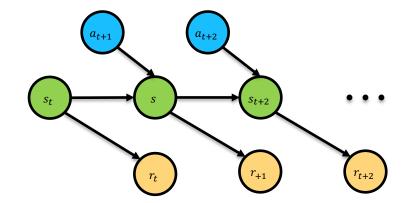
- Assumption of MDPs: Markov Property
 - A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} | S_1, \dots, S_{t-1}, S_t] = \mathbb{P}[S_{t+1} | S_t]$$

- Past states $S_1, ..., S_{t-1}$ do not change the outcome for the next state S_{t+1} .
- The current state S_t captures all relevant information from the history.
- "The future is independent of the past given the present"

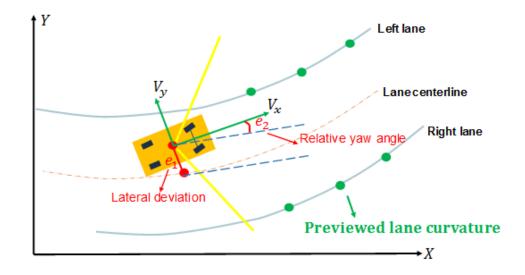
$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- State is the information used to determine what happens next
 - Direct (fully observable): $O_t = S_t^e$
 - Indirect (partially observable): $O_t = f(S_t^e)$



about the state space $\mathcal S$

- Assumption of MDPs: Markov Property
 - How can we ensure/construct such a Markov state?

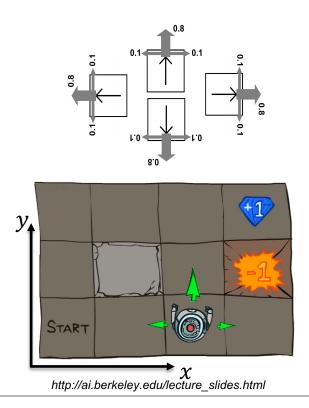


Sensor Measurements:

- Speed, Angle Requirements:
- Lateral acceleration
- Angular velocity

about the action space ${\mathcal A}$

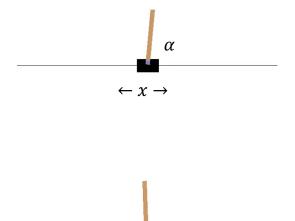
MDP example: Gridworld, episodic task



	Values
S	(x, y) with $x \in \{0, 1, 2, 3\}$ and $y \in \{0, 1, 2\}$
${\mathcal A}$	LEFT, RIGHT, UP, DOWN,

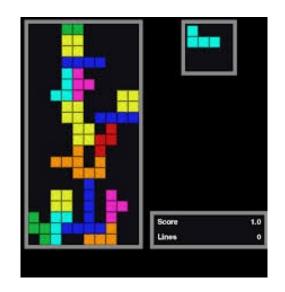
about the action space ${\mathcal A}$

MDP example: Cartpole, episodic or continuing task

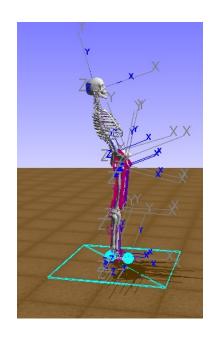


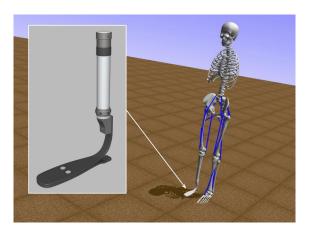
	Values
S	$(x, \theta, \dot{x}, \dot{\theta})$ with $x \in \mathbb{R}$ and $\alpha \in [0^{\circ}, 360^{\circ}]$
${\mathcal A}$	LEFT, RIGHT

MDP example: Tetris, episodic task



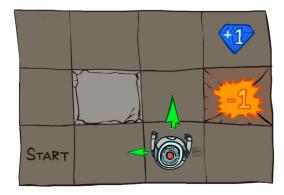
MDP example: Running with a prosthetic leg, episodic task

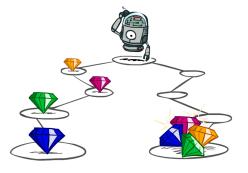




# of muscles	19
# degrees of freedom	14
reward	negative distance from requested velocity

- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of MDP (S, A, P, R, γ)
 - Recall: Actions have consequences!
 - Choosing an action $A^i \in \mathcal{A}$ for A_t at timestep t yields different reward sequences
 - How do we know which sequence to prefer?
 - Idea: Decay value of rewards over time.
 - γ is a discount factor: $\gamma \in [0,1]$





http://ai.berkeley.edu/lecture_slides.html

- We want to "solve" the MDP, by maximizing future rewards.
 - We see the episodes in the form of

$$S_0 \xrightarrow{(A_0, R_0)} S_1 \xrightarrow{(A_1, R_1)} S_2 \xrightarrow{(A_2, R_2)} S_3 \dots S_{t-1} \xrightarrow{(A_{t-1}, R_{t-1})} S_t$$

- **Question:** what happens if our problem never stops (i.e., $T = \infty$)?
 - Examples: data center cooling, recommender systems, etc.
- Total discounted (γ) reward (**return**) (of one sample)

$$G = R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + \dots = \sum_{t=0}^{\infty} \gamma^t R_t$$

- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of MDP (S, A, P, R, γ)
- Why discount rewards with γ ?
 - Mathematically convenient to discount rewards (true reason).
 - Avoids infinite returns in non-episodic problems
 - Datacenter cooling
 - Recommender system
 - Uncertainty about the future may not be fully represented (model uncertainty, our model is not perfect).
- Can I use $\gamma = 1$?
 - Yes, if you have an episodic setting or you definitely know that there is a terminal absorbing state.
- Should I use $\gamma = 1$?
 - NO!

about the policy π

Expected long-term value of state s:

$$v(s) = \mathbb{E}(G) = \mathbb{E}(R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + \dots + \gamma^t R_t)$$

- Goal: maximize the expected return $\mathbb{E}(G)$.
- We need a controller that helps us select the actions to maximize $\mathbb{E}(G)$!
- A policy π represents this controller:
 - \blacksquare π determines the agent's behavior, i.e., its way of acting
 - π is a mapping from state space $\mathcal S$ to action space $\mathcal A$

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

- Two types of policies:
 - Deterministic policy: $a = \pi(s)$.
 - Stochastic policy: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s].$
- New goal: find a policy that maximizes the expected return!

Some remarks about terminology

 \mathbf{s}_t – state \mathbf{a}_t – action $r(\mathbf{s}, \mathbf{a})$ – reward function

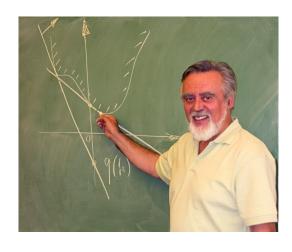
Richard Bellman

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

$$\mathbf{x}_t$$
 - state \mathbf{u}_t - action $c(\mathbf{x}, \mathbf{u})$ - cost function

Lev Pontryagin

Some remarks about terminology



Bertsekas, 2019:

RL uses Max/Value, DP uses Min/Cost

- Reward of a stage = (Opposite of) Cost of a stage.
- State value = (Opposite of) State cost.
- Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology

- Agent = Decision maker or controller.
- Action = Decision or control.
- Environment = Dynamic system.

Methods terminology

- Learning = Solving a DP-related problem using simulation.
- Self-learning (or self-play in the context of games) = Solving a DP problem using simulation-based policy iteration.
- Planning vs Learning distinction = Solving a DP problem with model-based vs model-free simulation.