
Reinforcement Learning

—

Lecture 3: Model-free Prediction
Christopher Mutschler

Recap
Markov Decision Processes

§ Agent learns by interacting with an environment over many time-steps:
§ Markov Decision Process (MDP) is a tool to formulate RL problems

§ Description of an MDP 𝒮,𝒜,𝒫,ℛ, 𝛾 :

2

• At each step t, the agent:
• is at state S!,
• performs action A!,
• receives reward R!.

• At each step t, the environment:
• receives action A! from the agent,
• provides reward R!,
• moves at state S!"#,
• increments time t ← t + 1.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:
If the interaction does stop at some point in time
(𝑇) then we have an episodic RL problem.

Recap
Markov Decision Processes

§ The general RL setting
§ Agent-Environment-Interface: actions, states, and rewards
§ Agent interacts with the environment over a sequence of discrete time steps (episodic or continual)
§ Policy as a stochastic rule to select actions

§ MDPs as tools to describe RL problems
§ Main ingredients: states, actions, state transition probabilities, return, and discount
§ Value functions that describe the expected return following a particular policy
§ Bellman equation as expression of the relationship between the value of a state and the value of its successor states

3

Recap
Dynamic Programming

§ Dynamic Programming (DP) methods to find optimal controllers
§ DP methods are guaranteed to find optimal solutions for Q and V in polynomial time (in number of states and actions)

and are exponentially faster than direct search
§ Policy Iteration computes the value function under a given policy to improve the policy while value iteration directly

works on the states
§ Perform sweeps through the state set
§ Implement the Bellman equation update
§ Use bootstrapping

§ Have limited applicability
in practice…

§ Require complete and accurate
model of the environment
à they need to know the dynamics of the environment!

4

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ So far: We know our MDP model 𝒮,𝒜,𝒫,ℛ, 𝛾 .
§ Planning by using dynamic programming
§ Solve a known MDP

§ What if we don’t know the model, i.e., 𝒫 or ℛ or both?

§ We distinguish between 2 problems for unknown MDPs:

§ Model-free Prediction: Evaluate the future, given the policy 𝜋.
(estimate the value function)

§ Model-free Control: Optimize the future by finding the best policy 𝜋.
(optimize the value function)

5

Overview

6

MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features

Monte Carlo and TD Methods

Assumptions

§ We know that the model of the world can be described by an MDP:

𝒮,𝒜,𝒫,ℛ, 𝛾

§ We know the (discrete) state and action spaces, i.e., 𝒮 and 𝒜.

§ We can interact with the world (with some policy 𝜋).

§ We receive experience samples from the environment in the form

𝑆$, 𝐴$, 𝑅$, 𝑆$"# = 𝑠, 𝑎, 𝑟, 𝑠% .

7

Monte Carlo and TD Methods

§ Idea:
§ Use the samples to estimate the true V- and Q-value functions for the policy 𝜋:

𝑉& 𝑠
𝑄& 𝑠, 𝑎

§ Use value function estimations for model-free prediction:

𝑉 𝑠 ≈ 𝑉& 𝑠
𝑄 𝑠, 𝑎 ≈ 𝑄& 𝑠, 𝑎 .

§ Two policy evaluation approaches:
§ Monte Carlo (MC) Learning
§ Temporal Difference (TD) Learning
§ variants in between, i.e., TD(λ)

8

Monte Carlo and TD Methods

§ Idea:
§ Use the samples to estimate the true V- and Q-value functions for the policy 𝜋

9

Given Policy

Randomly select state
and follow policy

&
Compute discounted
return for each state

Average the
values on each

state
https://medium.com/@zsalloum/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511

Remember:

Monte Carlo Policy Evaluation

§ MC Policy Evaluation
§ MC methods learn from episodes of experience under policy 𝜋:

𝑠$, 𝑎$, 𝑟$, 𝑠$"#, … , 𝑠'(#, 𝑎'(#, 𝑟'(#, 𝑠'	~	𝜋

§ To evaluate a state 𝑠 ∈ 𝒮 we keep track of the rewards received from that state onwards.

§ First-Visit Monte-Carlo Policy Evaluation:
§ First time-step 𝑡 that state 𝑠 is visited in an episode

§ Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1,
§ Increment total return 𝑆 𝑠 ← 𝑆 𝑠 + 𝐺$,
§ Value is estimated by mean return: 𝑉 𝑠 = ⁄𝑆(𝑠) 𝑁(𝑠)

§ Our estimation 𝑉 𝑠 will come close to 𝑉& 𝑠 as 𝑁 𝑠 → ∞.
(considering the law of large numbers)

10

Monte Carlo Policy Evaluation

§ MC Policy Evaluation
§ MC methods learn from episodes of experience under policy 𝜋:

𝑠$, 𝑎$, 𝑟$, 𝑠$"#, … , 𝑠'(#, 𝑎'(#, 𝑟'(#, 𝑠'	~	𝜋

§ To evaluate a state 𝑠 ∈ 𝒮 we keep track of the rewards received from that state onwards.

§ Every-Visit Monte-Carlo Policy Evaluation:
§ Every time-step 𝑡 that state 𝑠 is visited in an episode

§ Increment counter 𝑁 𝑠 ← 𝑁 𝑠 + 1,
§ Increment total return 𝑆 𝑠 ← 𝑆 𝑠 + 𝐺$,
§ Value is estimated by mean return: 𝑉 𝑠 = ⁄𝑆(𝑠) 𝑁(𝑠)

§ Our estimation 𝑉 𝑠 will come close to 𝑉& 𝑠 as 𝑁 𝑠 → ∞.
(considering the law of large numbers)

11

Monte Carlo Policy Evaluation

§ MC Policy Evaluation

12

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo Policy Evaluation

5.5. O↵-policy Prediction via Importance Sampling 105

When importance sampling is done as a simple average in this way it is called ordinary
importance sampling.

An important alternative is weighted importance sampling, which uses a weighted
average, defined as

V (s)
.
=

P
t2T(s)

⇢t:T (t)�1GtP
t2T(s)

⇢t:T (t)�1

, (5.6)

or zero if the denominator is zero. To understand these two varieties of importance
sampling, consider the estimates of their first-visit methods after observing a single return
from state s. In the weighted-average estimate, the ratio ⇢t:T (t)�1 for the single return
cancels in the numerator and denominator, so that the estimate is equal to the observed
return independent of the ratio (assuming the ratio is nonzero). Given that this return
was the only one observed, this is a reasonable estimate, but its expectation is vb(s) rather
than v⇡(s), and in this statistical sense it is biased. In contrast, the first-visit version
of the ordinary importance-sampling estimator (5.5) is always v⇡(s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the
trajectory observed is ten times as likely under the target policy as under the behavior
policy. In this case the ordinary importance-sampling estimate would be ten times the
observed return. That is, it would be quite far from the observed return even though the
episode’s trajectory is considered very representative of the target policy.

Formally, the di↵erence between the first-visit methods of the two kinds of importance
sampling is expressed in their biases and variances. Ordinary importance sampling is
unbiased whereas weighted importance sampling is biased (though the bias converges
asymptotically to zero). On the other hand, the variance of ordinary importance sampling
is in general unbounded because the variance of the ratios can be unbounded, whereas in
the weighted estimator the largest weight on any single return is one. In fact, assuming
bounded returns, the variance of the weighted importance-sampling estimator converges
to zero even if the variance of the ratios themselves is infinite (Precup, Sutton, and
Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower
variance and is strongly preferred. Nevertheless, we will not totally abandon ordinary
importance sampling as it is easier to extend to the approximate methods using function
approximation that we explore in the second part of this book.

The every-visit methods for ordinary and weighed importance sampling are both biased,
though, again, the bias falls asymptotically to zero as the number of samples increases.
In practice, every-visit methods are often preferred because they remove the need to keep
track of which states have been visited and because they are much easier to extend to
approximations. A complete every-visit MC algorithm for o↵-policy policy evaluation
using weighted importance sampling is given in the next section on page 110.

Exercise 5.5 Consider an MDP with a single nonterminal state and a single action
that transitions back to the nonterminal state with probability p and transitions to the
terminal state with probability 1�p. Let the reward be +1 on all transitions, and let
� =1. Suppose you observe one episode that lasts 10 steps, with a return of 10. What
are the first-visit and every-visit estimators of the value of the nonterminal state? ⇤

First-Visit MC: 𝑣! = 10

Every-Visit MC: 𝑣! =
"
"#
⋅ 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 5.5

92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy ⇡,
given a set of episodes obtained by following ⇡ and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di↵erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V ⇡ v⇡

Input: a policy ⇡ to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, S1, A1, R2, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless St appears in S0, S1, . . . , St�1:
Append G to Returns(St)
V (St) average(Returns(St))

13

Monte Carlo Policy Evaluation

Example: Blackjack. MDP:
§ States:

§ Current sum (12-21) [𝒫 models an automatic twist if sum of cards < 12]
§ Dealer’s showing card (ace-10)
§ Do I have a usable ace (yes or no)

§ Actions:
§ Stick: stop receiving cards (and terminate)
§ Twist: take another card (no replacement)

§ Rewards:
§ Stick:

§ +1 if sum of cards > sum of dealer cards
§ 0 if sum of cards = sum of dealer cards
§ -1 if sum of cards < sum of dealer cards

§ Twist:
§ -1 if sum of cards > 21 (and terminate), 0 otherwise

14

source: shutterstock.com

Monte Carlo Policy Evaluation

Example: Blackjack
§ 𝜋: stick if sum of cards ≥ 20 (i.e., 20 or 21), otherwise twist.
§ No discounting.

15

Monte Carlo Policy Evaluation

Example: Blackjack
§ 𝜋: stick if sum of cards ≥ 20 (i.e., 20 or 21), otherwise twist.
§ No discounting.

16

Monte Carlo Policy Evaluation

§ Backup Diagrams compared to DP:

17

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo Policy Evaluation

§ MC Policy Evaluation
§ Incremental Mean: the mean 𝜇#, 𝜇), … of a sequence 𝑥#, 𝑥), … can be computed incrementally:

𝜇* =
1
𝑘
L
+,#

*

𝑥+

𝜇* =
1
𝑘 𝑥* +L

+,#

*(#

𝑥+

𝜇* =
1
𝑘
𝑥* + (𝑘 − 1 	𝜇*(#)

𝜇* =
1
𝑘
𝑥* + 𝑘𝑢*(# 	− 𝑢*(#

𝜇* = 𝜇*(# +
1
𝑘
(𝑥* − 𝜇*(#)

18

Monte Carlo Policy Evaluation

§ MC Policy Evaluation
§ Incremental Monte-Carlo Updates

19

• Update 𝑉 𝑠 incrementally after each episode.
• For each state 𝑠 with actual return 𝐺:

𝑁 𝑠 ← 𝑁 𝑠 + 1 (just increment visit counter)

𝑉 𝑠 ← 𝑉 𝑠 + #
- . 𝐺 − 𝑉 𝑠 	 (update a bit à reduce error)

• In non-stationary problems, it can be useful to
track a running mean, i.e., forget old episodes:

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝐺 − 𝑉 𝑠 .

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 𝑇𝑎𝑟𝑔𝑒𝑡	 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝜇$ =
1
𝑘G
%&"

$

𝑥%

𝜇$ =
1
𝑘 𝑥$ +G

%&"

$'"

𝑥%

𝜇$ =
1
𝑘
𝑥$ + (𝑘 − 1 	𝜇$'")

𝜇$ = 𝜇$'" +
1
𝑘 (𝑥$ − 𝜇$'")

Overview

20

MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features

Monte Carlo and TD Methods

Assumptions:

§ We know that the model of the world can be described by an MDP:

𝒮,𝒜,𝒫,ℛ, 𝛾

§ We know the (discrete) state and action spaces, i.e., 𝒮 and 𝒜.

§ We can interact with the world (with some policy 𝜋).

§ We receive experience samples from the environment in the form

𝑆$, 𝐴$, 𝑅$, 𝑆$"# = 𝑠, 𝑎, 𝑟, 𝑠% .

21

Monte Carlo and TD Methods

§ Temporal-Difference Learning
§ Breaks up episodes and makes use of the intermediate returns
§ Learns directly from experience and interaction with the environment
§ Model-free: no knowledge of MDP
§ Learns from incomplete episodes (bootstrapping)
§ We update a guess towards a guess

22

Monte Carlo and TD Methods

§ Temporal-Difference Learning: Idea of TD(0) Policy Evaluation

23

𝑉(𝑠 = 𝑟 𝑠, 𝜋(𝑠) + 𝛾 G
!!∈*

𝒫 𝑠+|𝑠, 𝜋(𝑠) 	𝑉(𝑠′

𝑠, 𝑎, 𝑟, 𝑠+

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼(𝑟 + 𝛾𝑉(𝑠+) − 𝑉 𝑠)

𝑉(𝑠 = 𝑟 + 𝛾𝑉((𝑠+)

We don’t know the transition
model

But we have real transitions
available

Let’s assume that the reality is
the transition we observed

à and update our old
estimate “a bit” in this direction

Monte Carlo and TD Methods

§ TD(0) vs. MC Policy Evaluation
§ Goal: learn value function 𝑣&	online from experience when we follow policy 𝜋

24

• Simplest TD learning algorithm: TD(0)
• Update value towards estimation Q𝑮:

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼(Q𝑮 − 𝑉 𝑠)
Q𝑮 = 𝒓 + 𝜸𝑽 𝒔′ (estimated return)

• X𝐺 is called the TD target
• X𝐺 − 𝑉(𝑠) is called the TD error.

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒	 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 𝑇𝑎𝑟𝑔𝑒𝑡	 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

• Update 𝑉 𝑠 incrementally after each episode.
• For each state 𝑠 with actual return 𝑮:

𝑁 𝑠 ← 𝑁 𝑠 + 1 (just increment visit counter)

𝑉 𝑠 ← 𝑉 𝑠 + #
- . 𝑮 − 𝑉 𝑠 	 (update a bit à reduce error)

• In non-stationary problems, it can be useful to
track a running mean, i.e., forget old episodes:

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑮 − 𝑉 𝑠 .

Monte Carlo and TD Methods

§ TD(0) vs. MC Policy Evaluation

25

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ Example: Driving Home from work

26

State Elapsed Time [min] Predicted Time to Go [min] Predicted Total Time [min]

leaving office, friday at 6 0 30 30

reach car, raining 5 35 40

exiting highway 20 15 35

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 43

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

MC (𝛼 = 1) TD (𝛼 = 1)
𝐺! − 𝑉 𝑠!
= (43 − 20) − 15 = 8

0𝐺! − 𝑉 𝑠!
= (30 − 20 + 10) − 15 = 5

Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ Example: Random Walk

27

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ TD can learn before (or even without) knowing the final outcome

§ after each step
§ incomplete sequences
§ continuing problems, very delayed or no return

§ MC only works for episodic problems (i.e., that terminate)
§ must wait until end of the episode

28

DP Backup MC Backup TD Backup

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ Bias/Variance Trade-Off
§ MC has high variance, but zero bias

§ Good convergence (even with FA)
§ insensitive to initialization (no bootstrapping), simple to understand

§ TD has low variance, but some bias
§ TD(0) converges to 𝜋/(𝑠) (be careful with FA: bias is a risk)
§ sensitive to initialization (because of the bootstrapping)
§ Usually more efficient in practice

29

DP Backup MC Backup TD Backup

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ Example: You are the predictor!

§ Two states A, B; no discounting; 8 episodes of experience
§ keep iterating on experience (MC and TD until both of them converge):

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1
B, 1

B, 1

B, 0

§ What is 𝑉 𝑆 = 𝐴 and 𝑉 𝑆 = 𝐵 ?
§ MC: 𝑉 𝐴 = 0 𝑉 𝐵 = 0.75
§ TD: 𝑉 𝐴 = 0.75 𝑉 𝐵 = 0.75

30

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

A Br = 0
100%

r = 1

r = 0

75%

25%

Monte Carlo and TD Methods

§ Which one should I use? Does it make any difference?
§ TD exploits Markov property and is more efficient in Markov environments
§ MC is more efficient in non-Markov environments
§ TD usually converges faster than MC

31

DP Backup MC Backup TD Backup

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

Hands-On:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

32

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Monte Carlo and TD Methods

§ Intermediate methods between MC and TD(0) exist
§ They are based on n-step returns

33

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ Intermediate methods between MC and TD(0) exist
§ They are based on n-step returns

34

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods

§ Intermediate methods between MC and TD(0) exist
§ They are based on n-step returns
§ Unfortunately, their prediction accuracy is sensitive to the algorithm hyperparameters
§ Example: Random Walk

35

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Monte Carlo and TD Methods
A Unified View of Prediction Algorithms

36

sampling

bootstrapping

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

TD – Remarks on Convergence Properties

§ There is a lot of work that studied the convergence of TD:
§ Convergence and optimality of (linear) TD methods under batch training (no online learning):

§ Richard S. Sutton: Learning to predict by the Methods of Temporal Differences. Machine Learning 3:9-44. 1988.
§ Build on [Sutton1988] and proofs convergence of TD(0) and extends Watkin’s Q-learning theorem (next video):

§ Peter Dayan: The Convergence of TD(𝜆) for General 𝜆. Machine Learning 8:341-362. 1992.
§ Further studies in the context of Q-Learning and SARSA (next video):

§ Tommi Jaakkola, Michael Jordan, Stainder Singh: On the Convergence of Stochastic Iterative Dynamic Programming
Algorithms. Technical report. 1994.

§ Francisco Melo: Convergence of Q-Learning: A Simple Proof. Technical report.
(it has only 4 pages – so feel free to have a look J)

§ Satinder Singh, Tommi Jakkola, Michael Littman, Csaba Szepesvari: Convergence Results for Single-Step On-Policy
Reinforcement-Learning Algorithms. Machine Learning 39:287-308. 2000.

37

