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Recap

Markov Decision Processes

Agent learns by interacting with an environment over many time-steps:
Markov Decision Process (MDP) is a tool to formulate RL problems
Description of an MDP (S, A,P,R,v):

’J Agent ll
state reward action

S, Rt At
R

. t+1
<+

S.. | Environment ]4—

\
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:
If the interaction does stop at some point in time
(T) then we have an episodic RL problem.

» At each step t, the agent:
* s at state S;,
 performs action Ay,

* receives reward R;.

» At each step t, the environment:
* receives action A; from the agent,
» provides reward Ry,
* moves at state Si;1,
e incrementstimet « t+ 1.
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Recap

Markov Decision Processes

= The general RL setting
Agent-Environment-Interface: actions, states, and rewards
Agent interacts with the environment over a sequence of discrete time steps (episodic or continual)
Policy as a stochastic rule to select actions

=  MDPs as tools to describe RL problems
Main ingredients: states, actions, state transition probabilities, return, and discount
Value functions that describe the expected return following a particular policy
Bellman equation as expression of the relationship between the value of a state and the value of its successor states
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Recap

Dynamic Programming

Dynamic Programming (DP) methods to find optimal controllers

DP methods are guaranteed to find optimal solutions for Q and V in polynomial time (in number of states and actions)
and are exponentially faster than direct search

Policy Iteration computes the value function under a given policy to improve the policy while value iteration directly
works on the states

Perform sweeps through the state set
Implement the Bellman equation update
Use bootstrapping

Have limited applicability
in practice...

Require complete and accurate
model of the environment v mprovermen

- they need to know the dynamics of the environment! ot

evaluation

Vs vy

%Yeedy W)
T = (PP e——

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo and TD Methods

= So far: We know our MDP model (§,A,P,R,v).
Planning by using dynamic programming
Solve a known MDP

=  What if we don’t know the model, i.e., P or R or both?

= We distinguish between 2 problems for unknown MDPs:

Model-free Prediction: Evaluate the future, given the policy .
(estimate the value function)

Model-free Control: Optimize the future by finding the best policy .
(optimize the value function)

\
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Overview
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Monte Carlo and TD Methods

Assumptions

We know that the model of the world can be described by an MDP:

(5; CAI P; Rt ]/)

We know the (discrete) state and action spaces, i.e., § and A.

We can interact with the world (with some policy ).

We receive experience samples from the environment in the form

(St, At Rty St41) = (s,a,1,8").

\
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Monte Carlo and TD Methods

= |dea:
Use the samples to estimate the true V- and Q-value functions for the policy m:

VT(s)
Q"(s,a)

Use value function estimations for model-free prediction:

V(s) = V(s)
Q(s,a) = Q™(s,a).

Two policy evaluation approaches:
Monte Carlo (MC) Learning
Temporal Difference (TD) Learning
variants in between, i.e., TD(A)

\
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Monte Carlo and TD Methods

Remember:

= |dea:
Use the samples to estimate the true V- and Q-value functions for the policy

Randomly select state
and follow policy
Given Policy |:> & |:> values on each
Compute discounted state
return for each state

Average the

https://medium.com/@zsalloum/monte-carlo-in-reinforcement-learning-the-easy-way-564c53010511
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Monte Carlo Policy Evaluation

= MC Policy Evaluation
MC methods learn from episodes of experience under policy m:

S, a6, Tty St+1) o ST-1L, AT, 'T-1, ST~ T
To evaluate a state s € § we keep track of the rewards received from that state onwards.

= First-Visit Monte-Carlo Policy Evaluation:
First time-step t that state s is visited in an episode
Increment counter N(s) « N(s) + 1,
Increment total return S(s) « S(s) + G¢,
Value is estimated by mean return: V(s) = S(s)/N(s)

Our estimation V(s) will come close to V*(s) as N(s) — oo.
(considering the law of large numbers)

\
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Monte Carlo Policy Evaluation

= MC Policy Evaluation
MC methods learn from episodes of experience under policy m:

S, a6, Tty St+1) o ST-1L, AT, 'T-1, ST~ T
To evaluate a state s € § we keep track of the rewards received from that state onwards.

= Every-Visit Monte-Carlo Policy Evaluation:
Every time-step t that state s is visited in an episode
Increment counter N(s) « N(s) + 1,
Increment total return S(s) « S(s) + G¢,
Value is estimated by mean return: V(s) = S(s)/N(s)

Our estimation V(s) will come close to V*(s) as N(s) — oo.
(considering the law of large numbers)

\
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Monte Carlo Policy Evaluation

= MC Policy Evaluation

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1,51, A1, Re,...,S7r—1,Ar_1, Rr
G+ 0
Loop for each step of episode, t =T —1,T—-2,...,0:
G < vG + Ri41
Unless S; appears in Sp, S1,...,S5t—1:
Append G to Returns(St)
V(St) < average(Returns(St))

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo Policy Evaluation

Exercise 5.5 Consider an MDP with a single nonterminal state and a single action
that transitions back to the nonterminal state with probability p and transitions to the
terminal state with probability 1—p. Let the reward be 41 on all transitions, and let
~v=1. Suppose you observe one episode that lasts 10 steps, with a return of 10. What
are the first-visit and every-visit estimators of the value of the nonterminal state? []

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1, 51, A1, Ra,...,S7—1,Ar—_1, Rr
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G+ 7G+ R
Unless S; appears in Sg, S1,...,S5t—1:
10 Append G to Returns(St)
V(S¢) < average(Returns(St))

First-Visit MC: v

Every-Visit MC: vy == (10+9+8+7+6+5+4+3+2+1) =55
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Monte Carlo Policy Evaluation

Example: Blackjack. MDP:
= States:
Current sum (12-21) [P models an automatic twist if sum of cards < 12]
Dealer’s showing card (ace-10)
Do | have a usable ace (yes or no)
= Actions:
Stick: stop receiving cards (and terminate)
Twist: take another card (no replacement)
= Rewards:
Stick:
+1 if sum of cards > sum of dealer cards
0 if sum of cards = sum of dealer cards
-1 if sum of cards < sum of dealer cards
Twist:
-1 if sum of cards > 21 (and terminate), O otherwise

source: shutterstock.com
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Monte Carlo Policy Evaluation

After 10,000 episodes After 500,000 episodes

Example: Blackjack Usable
= g7: stick if sum of cards > 20 (i.e., 20 or 21), otherwise twist. ace
= No discounting.

No
usable
ace

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20
or 21, computed by Monte Carlo policy evaluation. |

\
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Monte Carlo Policy Evaluation

Example: Blackjack

16

7 stick if sum of cards > 20 (i.e., 20 or 21), otherwise twist.
No discounting.

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20
or 21, computed by Monte Carlo policy evaluation. |

Ezercise 5.1 Consider the diagrams on the right in Figure 5.1. Why does the estimated
value function jump up for the last two rows in the rear? Why does it drop off for the
whole last row on the left? Why are the frontmost values higher in the upper diagrams
than in the lower? O

Exercise 5.2 Suppose every-visit MC was used instead of first-visit MC on the blackjack
task. Would you expect the results to be very different? Why or why not? O

\
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Monte Carlo Policy Evaluation

= Backup Diagrams compared to DP:

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo Policy Evaluation

= MC Policy Evaluation
= Incremental Mean: the mean g, i, ... of a sequence x4, x,, ... can be computed incrementally:

k
1
e 13y

1
= Ug—1 T A (Xx — Ug—-1)

\
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Monte Carlo Policy Evaluation

= MC Policy Evaluation
= Incremental Monte-Carlo Updates

k
1
k e » Update V(s) incrementally after each episode.
J= 1 * For each state s with actual return G:
1
= E xk + 2 X] o ' N(S) «— N(S) + 1 (ustincrement visit counter)
j:]_ V(S) «— V(S) + L (G — V(S)) (update a bit > reduce error)
1 N(s)

= —(x, +(k—1) py_
k( et ) Hic-1) * In non-stationary problems, it can be useful to

1 : ) : _
_ — track a running mean, i.e., forget old episodes:
= U1+ (x _
Hik—-1 k( kK~ Ui-1)

V(s) «V(s)+ a(G—-V(s)).

\ )
|

NewEstimate < OldEstimate + StepSize [Target — OldEstimate]

\
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Overview
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Monte Carlo and TD Methods

Assumptions:

We know that the model of the world can be described by an MDP:

(5; CAI :P; Rt ]/)
We know the (discrete) state and action spaces, i.e., § and A.
We can interact with the world (with some policy ).

We receive experience samples from the environment in the form

(St, At Rty St41) = (s,a,1,8").

21

\

~ Fraunhofer

s



Monte Carlo and TD Methods

= Temporal-Difference Learning
Breaks up episodes and makes use of the intermediate returns
Learns directly from experience and interaction with the environment
Model-free: no knowledge of MDP
Learns from incomplete episodes (bootstrapping)
We update a guess towards a guess

\
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Monte Carlo and TD Methods

= Temporal-Difference Learning: Idea of TD(0) Policy Evaluation

V() = (s, 7D + v ) [P'ls m(s) V(s

— s'es

(s,a,1,s")

Vi(s) =r+yV™(s")

V(s) «V(s)+ a(r+yV(s") —V(s))

23

We don’t know the transition
model

But we have real transitions
available

Let's assume that the reality is
the transition we observed

- and update our old
estimate “a bit” in this direction

\
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Monte Carlo and TD Methods

= TD(0) vs. MC Policy Evaluation
Goal: learn value function v, online from experience when we follow policy

« Simplest TD learning algorithm: TD(0) » Update V(s) incrementally after each episode.
« Update value towards estimation G: * For each state s with actual return G:

V(S) «— V(S) + a(G V(S)) N(S) «— N(S) + 1 (just increment visit counter)

G =7r+4+ YV(S) (estimated return) V(S) «— V(S) + m (G — V(S)) (update a bit = reduce error)
« G is called the TD target * In non-stationary problems, it can be useful to
« G —V(s)is called the TD error. track a running mean, i.e., forget old episodes:

V(s) «V(s)+ a(G—V(s)).

|
NewEstimate < OldEstimate + StepSize [Target — OldEstimate]

\
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Monte Carlo and TD Methods

= TD(0) vs. MC Policy Evaluation

Tabular TD(0) for estimating v, First-visit MC prediction, for estimating V = v,

Input: the policy 7 to be evaluated Input: a policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1] Initialize:
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) =0 V(s) € R, arbitrarily, for all s € §

Loop for each episode: Returns(s) < an empty list, for all s € 8

Initialize S Loop forever (for each episode):
Loop for each step of episode: Generate an episode following 7: So, Ao, R1, 51, A1, Re,...,S7—1,Ar—1, Rr
A « action given by 7 for S G+ 0
Take action A, observe R, S’ Loop for each step of episode, t =T —1,T7—-2,...,0:
V(S) « V(S)+a[R+~V(S) — V(9)] G« 7G + Re1
S« s Unless S; appears in So, S1,...,St—1:
until S is terminal Append G to Returns(S:)

V(St) + average(Returns(St))

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
= Example: Driving Home from work

Elapsed Time [min] Predicted Time to Go [min] | Predicted Total Time [min]

leaving office, friday at 6 30

reach car, raining 5 35 40

exiting highway 20 15 35

2ndary road, behind truck 30 10 40

entering home street 40 3 43

arrive home 43 0 -

45 45
___actual outcome ____ actual
A outcome
. 40 404 pece-@ 00 Eeess
Predicted
total
— travel 35 35 1 - —
MC (a = 1) time 3 A D (a = 1)
Ge — V(st) G —V(se)
30 =(43-20)—15=8 304 =(30—-20+10)—15=5
Ieai/ing realch exi;ing 2n<;ary ho:ne arr:ve Iea\I/ing ree:ch exilting 2n<liary ho:ne arrlive
office car highway road street home office  car highway road street home
Situation Situation
Sutton, R. S., & Barto, A. G. (2018). Reinf t ing: An introduction. MIT ?
% utton, R. S., arto, A. G. (. ). Reinforcement learning: An introduction. press. % FraunhOfer
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Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
= Example: Random Walk

0.8
0.6
Estimated
value 0.4 0.25
0.2 - 02 = \ 2
0 T T T T 1 0 1 5 -
i e : 5 : RMS error,
State averaged

over states 0.1+

0.05

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press. Walks / EpISOdeS

\
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Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
TD can learn before (or even without) knowing the final outcome
after each step
incomplete sequences
continuing problems, very delayed or no return
MC only works for episodic problems (i.e., that terminate)
must wait until end of the episode

DP Backup MC Backup TD Backup

V(St) = Er [Rep1 +7V(Ser1)]

V(St) = V(St) + a(Gr — V(St)) V(Se) = V(Se) + a (Rep1 +7V(Ser1) = V(St)

S

loN

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\
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Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
Bias/Variance Trade-Off
MC has high variance, but zero bias
Good convergence (even with FA)
insensitive to initialization (no bootstrapping), simple to understand
TD has low variance, but some bias
TD(0) converges to m,(s) (be careful with FA: bias is a risk)
sensitive to initialization (because of the bootstrapping)
Usually more efficient in practice

DP Backup MC Backup TD Backup

V(St) = Er [Rep1 +7V(Ser1)]

V(St) = V(St) + a(Gr — V(St)) V(Se) = V(Se) + a (Rep1 +7V(Ser1) = V(St)

S

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
= Example: You are the predictor!
Two states A, B; no discounting; 8 episodes of experience
keep iterating on experience (MC and TD until both of them converge):

r=0
25%

What is V(S = A) and V(S = B)?

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\
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Monte Carlo and TD Methods

= Which one should | use? Does it make any difference?
TD exploits Markov property and is more efficient in Markov environments
MC is more efficient in non-Markov environments
TD usually converges faster than MC

DP Backup MC Backup TD Backup

V(St) = Er [Rep1 +7V(Ser1)]

V(St) = V(St) + a(Gr — V(St)) V(Se) = V(Se) + a (Rep1 +7V(Ser1) = V(St)

loN

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\
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Monte Carlo and TD Methods

Hands-On:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

32
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https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Monte Carlo and TD Methods

= |Intermediate methods between MC and TD(0) exist

= They are based on n-step returns 1-step TD co-step TD
and TD(0) 2-stepTD  3-step TD n-step TD  and Monte Carlo

T 1 T
!

b
!
O

Op—=s—0OF——( ()

!
1
!
1

155 @ )i—e—e—a—C)s—0+—()

!
O .
!
O

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo and TD Methods

34

Intermediate methods between MC and TD(0) exist
They are based on n-step returns

n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size a € (0, 1], a positive integer n

Initialize V (s) arbitrarily, for all s € 8

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T + o0
Loop fort=10,1,2,...:
| Ift <T, then:

| Take an action according to 7(-|S;)

| Observe and store the next reward as R;,; and the next state as S;1,

| If S¢y1 is terminal, then T+t + 1

| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
IR

| Gy R,

| Ifr+n<T,then: G+ G+ "V (Srin) (G n)
| V(S‘r) = V(S‘r) + [G - V(ST)]

Untilr=T-1

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo and TD Methods

35

Intermediate methods between MC and TD(0) exist
They are based on n-step returns

Unfortunately, their prediction accuracy is sensitive to the algorithm hyperparameters

Example: Random Walk

0.55
0.5

Average 045

RMS error
over 19 states 04

and first 10
episodes %

03

0.25

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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Monte Carlo and TD Methods
A Unified View of Prediction Algorithms

bootstrapping

width

. Temporal- ? SRR Dynamic
sam pl INg difference /0\ /0\ programming
learning O LROO O

/' search
ooR &

,/O\ Exhaustive
F

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
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TD - Remarks on Convergence Properties

There is a lot of work that studied the convergence of TD:
Convergence and optimality of (linear) TD methods under batch training (no online learning):
Richard S. Sutton: Learning to predict by the Methods of Temporal Differences. Machine Learning 3:9-44. 1988.
Build on [Sutton1988] and proofs convergence of TD(0) and extends Watkin's Q-learning theorem (next video):
Peter Dayan: The Convergence of TD(A) for General A. Machine Learning 8:341-362. 1992.
Further studies in the context of Q-Learning and SARSA (next video):

Tommi Jaakkola, Michael Jordan, Stainder Singh: On the Convergence of Stochastic Iterative Dynamic Programming
Algorithms. Technical report. 1994.

Francisco Melo: Convergence of Q-Learning: A Simple Proof. Technical report.
(it has only 4 pages — so feel free to have a look ©)

Satinder Singh, Tommi Jakkola, Michael Littman, Csaba Szepesvari: Convergence Results for Single-Step On-Policy
Reinforcement-Learning Algorithms. Machine Learning 39:287-308. 2000.
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