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Overview
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MDP

DP

MC and TD

Q-Learning, SARSA

VFA

DQNs

Optimal Controller

I don’t have a model (estimation)

I don’t have a model (control)

State-space too large

I don’t have any good features



Value Function Approximation

§ Challenge #1: In real world problems, the state space can be large
§ Backgammon: 10!" states
§ Computer Go: 10#$" states
§ Robot arm: infinite number of states! (continuous)

§ Problems with large MDPs:
§ There are too many states and/or actions to store in memory
§ It is too slow to learn the value of each state individually
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https://www.youtube.com/watch?v=HT-UZkiOLv8http://ai.berkeley.edu/lecture_slides.html



Value Function Approximation

§ Challenge #2: Generalization across states
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Let‘s say we discover 
through experience 
that this state is bad:

Pieter Abbeel: CS 188 Introduction to Artificial Intelligence. Fall 2018

In naive Q-learning 
we know nothing 
about this state:

Or even this one:



Value Function Approximation

§ Value Function Representations
§ Exact:

§ A table with a distinct value for each case
§ V: one entry per s
§ Q: one entry for each (s, a) pair

§ Approximate:
§ Approximate V or Q with a function

approximator
(e.g., NN, polynomials, RBF, …)

+ We only need to store the approximator parameters
- Convergence properties do not hold anymore
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David Silver. 2016.

!𝑣 𝑠, 𝒘 ≈ 𝑣!(𝑠)
!𝑞 𝑠, 𝑎, 𝒘 ≈ 𝑞!(𝑠, 𝑎)



Value Function Approximation

§ VFA: Describe a state using a vector of features
§ Features are functions from states to real numbers that capture important properties of the state
§ Example features for Pac Man:

§ Distance to closest ghost
§ Distance to closest dot
§ Number of ghosts
§ …

6



Value Function Approximation

§ Our goal is to learn good parameters 𝑤 that approximate the true value function well:

 𝐶 = 𝑄" 𝑠, 𝑎 − 0𝑄! 𝑠, 𝑎; 𝑤
#

 𝐶 = 𝑄" 𝑠, 𝑎 −	𝜙(𝑠, 𝑎)$𝑤 #

 

   %&
%'
	= −2 𝜙(𝑠, 𝑎)(𝑄" 𝑠, 𝑎 − 𝜙 𝑠, 𝑎 $𝑤)

      𝑤 ← 𝑤	 − 𝜂 %&
%'

      𝑤 ← 𝑤 + 2	𝜂	𝜙 𝑠, 𝑎 𝑄" 𝑠, 𝑎 	− 0𝑄! 𝑠, 𝑎; 𝑤  

𝑄" 𝑠, 𝑎 =
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𝑟 + 𝛾 𝑚𝑎𝑥(!𝑄 𝑠), 𝑎) Q-Learning with Linear VFA
𝑟 + 𝛾 𝑄 𝑠), 𝑎) SARSA with Linear VFA
𝐺* MC with Linear VFA



Value Function Approximation

§ Our goal is to learn good parameters 𝑤 that approximate the true value function well:
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𝑞' = 𝑞 !

𝜋 = 𝜀
−𝑔𝑟𝑒

𝑒𝑑𝑦(
𝑞')

𝑞∗
starting
𝑤, 𝜋

Policy Evaluation: Estimate 𝑞!
e.g., Iterative Policy Evaluation

Policy Improvement: Generate 𝜋) ≥ 𝜋
e.g., 𝜖-greedy Policy Improvement



Value Function Approximation

§ Our goal is to learn good parameters 𝑤 that approximate the true value function well:
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𝑞' = 𝑞 !

𝜋 = 𝜀
−𝑔𝑟𝑒

𝑒𝑑𝑦(
𝑞')

𝑞' ≈ 𝑞∗
starting
𝑤, 𝜋

Policy Evaluation: Estimate E𝒒 ⋅,⋅, 𝒘 ≈ 𝑞!
e.g., Approximate Policy Evaluation

Policy Improvement: Generate 𝜋) ≥ 𝜋
e.g., 𝜖-greedy Policy Improvement



Value Function Approximation

§ Linear Value Function Approximation (careful: non-linear features)

)𝑄% 𝑠, 𝑎; 𝑤 = 𝜙(𝑠, 𝑎)&𝑤
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Coursera ML Course

Housing Price Prediction



Value Function Approximation

§ Linear Value Function Approximation (careful: non-linear features)

)𝑄% 𝑠, 𝑎; 𝑤 = 𝜙(𝑠, 𝑎)&𝑤

§ Example features: Polynomial Basis

𝜙' 𝑠, 𝑎( =0
)*#

+
𝑠)
,!,# , 𝑐',) ∈ 0,1, … , 𝑛 , 𝑎( ∈ 𝒜	
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Action A Action B Action C Action D
0𝑄!

𝑠



Value Function Approximation

§ Linear Value Function Approximation (careful: non-linear features)

)𝑄% 𝑠, 𝑎; 𝑤 = 𝜙(𝑠, 𝑎)&𝑤

§ Example features: Polynomial Basis, for instance:

𝑠#, 𝑠! & → 1, 𝑠#, 𝑠!, 𝑠#𝑠! &

𝑠#, 𝑠! & → 1, 𝑠#, 𝑠! , 𝑠#𝑠!, 𝑠#!, 𝑠!!, 𝑠#𝑠!!, 𝑠#!𝑠!, 𝑠#!𝑠!! 	
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Action A Action B Action C Action D
0𝑄!

𝑠



Value Function Approximation

§ Linear Value Function Approximation (careful: non-linear features)

)𝑄% 𝑠, 𝑎; 𝑤 = 𝜙(𝑠, 𝑎)&𝑤

§ Example features: Fourier Basis

𝜙' 𝑠, 𝑎) = cos 𝑖𝜋𝑠 , 𝑠 ∈ 0,1 , 𝑎) ∈ 𝒜	
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



Value Function Approximation

§ Linear Value Function Approximation (careful: non-linear features)

)𝑄% 𝑠, 𝑎; 𝑤 = 𝜙(𝑠, 𝑎)&𝑤

§ Example features: Tile Coding
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

9.5. Feature Construction for Linear Methods 219

Possible 
generalizations 
for uniformly 
offset tilings

Possible 
generalizations

for asymmetrically 
offset tilings

Figure 9.11: Why tile asymmetrical o↵sets are preferred in tile coding. Shown is the strength
of generalization from a trained state, indicated by the small black plus, to nearby states, for the
case of eight tilings. If the tilings are uniformly o↵set (above), then there are diagonal artifacts
and substantial variations in the generalization, whereas with asymmetrically o↵set tilings the
generalization is more spherical and homogeneous.

Tilings in all cases are o↵set from each other by a fraction of a tile width in each
dimension. If w denotes the tile width and n the number of tilings, then w

n
is a fundamental

unit. Within small squares w

n
on a side, all states activate the same tiles, have the same

feature representation, and the same approximated value. If a state is moved by w

n

in any cartesian direction, the feature representation changes by one component/tile.
Uniformly o↵set tilings are o↵set from each other by exactly this unit distance. For a
two-dimensional space, we say that each tiling is o↵set by the displacement vector (1, 1),
meaning that it is o↵set from the previous tiling by w

n
times this vector. In these terms,

the asymmetrically o↵set tilings shown in the lower part of Figure 9.11 are o↵set by a
displacement vector of (1, 3).

Extensive studies have been made of the e↵ect of di↵erent displacement vectors on the
generalization of tile coding (Parks and Militzer, 1991; An, 1991; An, Miller and Parks,
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Value Function Approximation

§ Linear Sarsa with Coarse Coding1 in Mountain Car

15

David Silver. 2016.

1 „Tile Coding with circles“



Value Function Approximation

§ Linear Value Function Approximation (careful: non-linear features)

)𝑄% 𝑠, 𝑎; 𝑤 = 𝜙(𝑠, 𝑎)&𝑤

§ Example features: Radial Basis Functions (RBFs)

𝜙' 𝑠, 𝑎) =̇ exp −
𝑠 − 𝑐' !

2𝜎'!
, 𝑎) ∈ 𝒜	
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Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.



Value Function Approximation

§ Linear Sarsa with Radial Basis Functions in Mountain Car

17

Matt Kretchmar, 1995



Value Function Approximation

§ Why Linear VFA?
§ Convergence of Control Algorithms

18

Algorithm Table Lookup Linear Non-linear
Monte-Carlo Control ✔ (✔) ✘

SARSA ✔ (✔) ✘
Q-learning ✔ ✘ ✘

(✔) = chatters around near-optimal value function



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA?

19



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?

→ YES! (But the proof is out of the scope of this class…)

20



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → YES!

§ Example Gridworld problem:
§ No obstacles,
§ deterministic actions (UDLR)
§ no discounting
§ reward is −1 everywhere

except +10 at goal.

21

𝑥

𝑦

10

0

0



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → YES!

§ Represent state 𝑠 by a feature vector:

𝜙 𝑠 =
1
𝑥
𝑦

§ Perform linear VFA:

)𝑉 𝑠; 𝑤 = 𝜙 𝑠 &𝑤 = 1 𝑥 𝑦
𝑤"
𝑤#
𝑤!

 )𝑉 𝑠; 𝑤 = 𝑤" + 𝑤#𝑥 + 𝑤!𝑦

22

10

𝑥

𝑦

0

0



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → YES!

§ Is there a good linear approximation? → YES

)𝑉 𝑠; 𝑤 = 1 𝑥 𝑦
10
−1
−1

)𝑉 𝑠;𝑤 = 10 − 𝑥 − 𝑦 = 10 − |𝑥 + 𝑦|

§ Note: Manhattan Distance.

23
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𝑥

𝑦

0

0



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → YES!

§ What if the reward changes (see Fig.)?
§ Linear VFA:

)𝑉 𝑠; 𝑤 = 𝜙 𝑠 &𝑤

)𝑉 𝑠;𝑤 = 1 𝑥 𝑦
𝑤"
𝑤#
𝑤!

)𝑉 𝑠; 𝑤 = 𝑤" + 𝑤#𝑥 + 𝑤!𝑦

§ Is there a good linear approximation?
→ NO!

24
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Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → YES!

§ Linear VFA with a new feature 𝒛:

)𝑉 𝑠; 𝑤 = 𝜙 𝑠 &𝑤

)𝑉 𝑠;𝑤 = 1 𝑥 𝑦 𝑧

𝑤"
𝑤#
𝑤!
𝑤.

)𝑉 𝑠; 𝑤 = 𝑤" + 𝑤#𝑥 + 𝑤!𝑦 + 𝑤.𝑧

§ Is there a good linear approximation now? 
→ YES!

𝑧 = 3 − 𝑥 + 3 − 𝑦

25
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𝑥

𝑦

0

0

3
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Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → NO!

26

Feature Description

Landing Height Height of last piece is added.

Eroded Piece Cells
#rows eliminated in the last move 
multiplied with the #bricks eliminated 
from the last piece added.

Row Transitions
#horizontal full to empty or empty to 
full transitions between the cells on 
the board.

Columns Transitions Same thing for vertical transitions.

Holes #empty cells covered by at least one 
full cell.

https://www.flaticon.com/free-icon/tetris_1006985

Thierry, C. and Scherrer, B.: Improvements on Learning Tetris with Cross-Entropy. 2010.

https://www.flaticon.com/free-icon/tetris_1006985


Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → NO!
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Feature Description

Board Wells /
!∈!#$$%

(1 + 2 +⋯+ 𝑑𝑒𝑝𝑡ℎ 𝑤 )

Column Height Height of the pth column of the 
board.

Column Difference
Absolute difference 

|ℎ& − ℎ&'(|
between adjacent columns.

Maximum Height Maximum pile height: max
&
ℎ&.

Holes Number of empty cells covered by at 
least one full cell.

https://www.flaticon.com/free-icon/tetris_1006985

Thierry, C. and Scherrer, B.: Improvements on Learning Tetris with Cross-Entropy. 2010.

https://www.flaticon.com/free-icon/tetris_1006985


Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → NO!

28

Tziortziotis, N. and Tziortziotis, K. and Blekas, K.: Play Ms. Pac-Man Using an Advanced Reinforcement Learning Agent. 2014.

Feature Description

Nearby Walls Existence of wall to all four wind 
directions.

Nearest Target
Direction of the nearest target
where it is preferable for the Ms. 
Pac-Man to move.

Nearby Ghosts Existence of a ghost to all four 
wind directions.

Existance of Escape Describes if Ms. Pac-Man can 
move freely or if she is trapped.



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → NO!

29

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003



Value Function Approximation (VFA)

§ There are two important questions to answer with VFA:
1. Can we approximate any V-/Q-value function with a linear FA?
2. Is it easy to find such a linear FA? → NO!

30

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003



Value Function Approximation (VFA)

§ Idea: Why don‘t we replace linear approximation with NNs?
§ Because theory tells us that this doesn‘t work out

31

✔ =chatters around near-optimal value function 

Algorithm Table Lookup Linear Non-linear
Monte-Carlo Control ✔ (✔) ✘

SARSA ✔ (✔) ✘
Q-learning ✔ ✘ ✘



Value Function Approximation (VFA)

§ Idea: Why don‘t we replace linear approximation with NNs?
§ Because theory tells us that this doesn‘t work out
§ But in some applications, it did J!

§ World‘s Best Backgammon Player:
§ Neural network (NN) with 80 hidden units
§ Used RL for 300.000 games of self-play
§ One of the top players in the world!

32

https://www.flaticon.com/free-icon/backgammon_683899

https://www.flaticon.com/free-icon/backgammon_683899


Value Function Approximation (VFA)
Parenthesis: Gerry Tesauro‘s TD-Gammon (‘92, ’94, ’95) 

33

• Rule to update the network weights 𝑤:

𝑤 ← 𝑤 + 𝛼(𝑉!"# − 𝑉!)*
$%#

!

𝜆!&$∇'𝑉$

Tesauro, G.: Temporal difference learning and TD-Gammon. 1995.
see also: https://users.auth.gr/kehagiat/Research/GameTheory/12CombBiblio/BackGammon.html

https://users.auth.gr/kehagiat/Research/GameTheory/12CombBiblio/BackGammon.html


Value Function Approximation (VFA)
Parenthesis: Gerry Tesauro‘s TD-Gammon (‘92, ’94, ’95) 

34

Tesauro, G.: Temporal difference learning and TD-Gammon. 1995.
see also: https://users.auth.gr/kehagiat/Research/GameTheory/12CombBiblio/BackGammon.html

https://users.auth.gr/kehagiat/Research/GameTheory/12CombBiblio/BackGammon.html


Value Function Approximation (VFA)

§ Idea: Why don‘t we replace linear approximation with NNs?
§ Because theory tells us that this doesn‘t work out

§ Besides some few hand-crafted and tuned successes NNs have not been managed to be applied “as is” to RL

35

✔ =chatters around near-optimal value function 

Algorithm Table Lookup Linear Non-linear
Monte-Carlo Control ✔ (✔) ✘

SARSA ✔ (✔) ✘
Q-learning ✔ ✘ ✘



Deep Q-Networks (DQNs)

§ Then a game-changing result was published in Nature:
DQN from DeepMind (now Google DeepMind)
§ Surpassed human player in 49 games of the Atari 2600 series
§ Same RL algorithm to learn a policy in each game
§ End-to-end: Only image pixels as input
§ “The“ contribution that initiated a round of huge investments in RL

36

https://www.aarondefazio.com/adefazio-rl2014.pdfhttps://storage.googleapis.com/deepmind-
media/dqn/DQNNaturePaper.pdf



Deep Q-Networks (DQNs)

§ Then a game-changing result was published in Nature:
DQN from DeepMind (now Google DeepMind)

37

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf



Deep Q-Networks (DQNs)

§ How does it work?
§ A convolutional neural network reads the image from the game

(i.e., a framestack that uses the last 𝑁 = 4 frames).
§ The CNN is a value function approximator for the 𝑄(𝑠, 𝑎) function.
§ The reward is the game score.
§ The network weights are tuned using backpropagation signals of the rewards.

38

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/FA.pdf https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf



Deep Q-Networks (DQNs)

§ How does it work?
§ DQNs are „Q-Learning on steroids“ (Deep NN as VFA)
§ Training possible in Tensorflow (or Pytorch, Keras, …)
§ Objective function for gradient descent:

𝐿(𝑤') = 𝔼A,B,C,A$~E! 𝑦' − 𝑄(𝑠, 𝑎, 𝑤) !

39

Q-Learning with NN VFA
• Approximated Q-function with NN

and parameters 𝑤:
𝑄 𝑠, 𝑎 ≈ )𝑄(𝑠, 𝑎; 𝑤F)

• Target value:
𝑦' = 𝑟 + 𝛾 max

B$∈𝒜
)𝑄(𝑠I, 𝑎I; 𝑤F)

• Updating:
𝑤'J# = 𝑤' + 𝛼 𝑦' − )𝑄 𝑠, 𝑎; 𝑤' ∇K! )𝑄 𝑠, 𝑎; 𝑤'  
Every k steps: 𝑤F ← 𝑤'

Q-Learning with Linear VFA
• Approximated Q-function with

parameters 𝑤 and feature vector 𝜙:
𝑄 𝑠, 𝑎 ≈ 𝑤&𝜙(𝑠, 𝑎)

• Target value:
𝑦' = 𝑟 + 𝛾 max

B$∈𝒜
𝑤'&𝜙(𝑠I, 𝑎I)

• Updating:
𝑤'J# = 𝑤' + 𝛼[𝑦' − 𝑤'&𝜙(𝑠, 𝑎)]𝜙(𝑠, 𝑎)



Deep Q-Networks (DQNs)
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ENV

𝜋

action (𝑎))

𝑎! = 𝜖 − argmax" 𝑄(𝑠! , 𝑎)	

𝑄 𝑠! , 𝑎! ← 𝑄 𝑠! , 𝑎! + 𝛼 𝑟! + 𝛾max# 𝑄 𝑠!$%, 𝑎 − 𝑄 𝑠! , 𝑎!

Q-Learning



Deep Q-Networks (DQNs)
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ENV

𝜋

action (𝑎))

ℒ

State (𝑠))
Action (𝑎))

Reward (𝑟))

Next State (𝑠)'()

𝑎! = 𝜖 − argmax" 8𝑄(𝑠! , 𝑎; 𝑤)	

up
da

te
 𝑤

8𝑄 𝑠& , 𝑎&; 𝑤  1
8𝑄(𝑠&$%, 𝑎; 𝑤) 2

ℒ& = 𝑟& + 𝛾 max#!∈𝒜
8𝑄 𝑠&$%, 𝑎; 𝑤 − 8𝑄 𝑠& , 𝑎&; 𝑤

)

12

DQN v0.1

two passes: 𝑠& , 𝑠&$%



Deep Q-Networks (DQNs)

§ How does it work?
§ A bag of tricks for stabilizing learning:

1. Experience Replay:
§ Problem: Experiences are correlated over time.
→ Oscillations and divergence during learning.

§ Solution: Random sampling of experience mini-batches from a memory.
→ Samples can be re-used to increase data efficiency.
→ Breaking correlations by randomization reduces variance.

42

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/deep_rl.pdf

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/deep_rl.pdf


Deep Q-Networks (DQNs)

43

ENV

𝜋

action (𝑎))

ℒ

State (𝑠))
Action (𝑎))

Reward (𝑟))

Next State (𝑠)'()

𝑎! = 𝜖 − argmax" 8𝑄(𝑠! , 𝑎; 𝑤)	

up
da

te
 𝑤

8𝑄 𝑠& , 𝑎&; 𝑤  1
8𝑄(𝑠&$%, 𝑎; 𝑤) 2

ℒ& = 𝑟& + 𝛾 max#!∈𝒜
8𝑄 𝑠&$%, 𝑎; 𝑤 − 8𝑄 𝑠& , 𝑎&; 𝑤

)

12

DQN v0.1

two passes: 𝑠& , 𝑠&$%
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DQN v0.2

ENV

𝜋

action (𝑎))

ℒ

State (𝑠))
Action (𝑎))

Reward (𝑟))

Next State (𝑠)'()

𝑎! = 𝜖 − argmax" 8𝑄(𝑠! , 𝑎; 𝑤)	

two passes: 𝑠& , 𝑠&$%

up
da

te
 𝑤

8𝑄 𝑠& , 𝑎&; 𝑤  1
8𝑄(𝑠&$%, 𝑎; 𝑤) 2

ℒ& = 𝑟& + 𝛾 max#!∈𝒜
8𝑄 𝑠&$%, 𝑎; 𝑤 − 8𝑄 𝑠& , 𝑎&; 𝑤

)

12

𝑠(, 𝑎(, 𝑟(, 𝑠*
𝑠*, 𝑎*, 𝑟*, 𝑠+
𝑠+, 𝑎+, 𝑟+, 𝑠,

…

mini-
batch



Deep Q-Networks (DQNs)

§ How does it work?
§ A bag of tricks for stabilizing learning:

1. Experience Replay.
2. Separate, frozen target Q-network:

§ Problem: Target Q-values 𝑦' = 𝑟 + 𝛾 max
B$∈𝒜

)𝑄(𝑠I, 𝑎I; 𝑤'F#) change constantly.

→ Oscillations and divergence during learning.
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Deep Q-Networks (DQNs)

§ How does it work?
§ A bag of tricks for stabilizing learning:

1. Experience Replay.
2. Separate, frozen target Q-network:

§ Solution: Two Q-networks:
à Frozen Target Q-network with parameters 𝑤F predicts Q-learning targets )𝑄 𝑠I, 𝑎I; 𝑤'F .
à Dynamic Main Q-network with parameters 𝑤 evaluates current Q-values )𝑄 𝑠I, 𝑎I; 𝑤'J# .

à Perform a gradient descent step (w.r.t. 𝑤) towards 𝑦' − )𝑄 𝑠, 𝑎; 𝑤'
!

§ Added delay breaks correlations between Q-network and target.
§ Avoids oscillations by having fixed targets.

(Note: We periodically update the target Q-network by copying the weights 𝑤F ← 𝑤'.)
§ Reduces chance of divergence.
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DQN v0.2

ENV

𝜋

action (𝑎))

ℒ

State (𝑠))
Action (𝑎))

Reward (𝑟))

Next State (𝑠)'()

𝑎! = 𝜖 − argmax" 8𝑄(𝑠! , 𝑎; 𝑤)	

two passes: 𝑠& , 𝑠&$%

up
da

te
 𝑤

8𝑄 𝑠& , 𝑎&; 𝑤  1
8𝑄(𝑠&$%, 𝑎; 𝑤) 2

ℒ& = 𝑟& + 𝛾 max#!∈𝒜
8𝑄 𝑠&$%, 𝑎; 𝑤 − 8𝑄 𝑠& , 𝑎&; 𝑤

)

12

𝑠(, 𝑎(, 𝑟(, 𝑠*
𝑠*, 𝑎*, 𝑟*, 𝑠+
𝑠+, 𝑎+, 𝑟+, 𝑠,

…

mini-
batch
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DQN v1.0

𝑠(, 𝑎(, 𝑟(, 𝑠*
𝑠*, 𝑎*, 𝑟*, 𝑠+
𝑠+, 𝑎+, 𝑟+, 𝑠,

…

ENV

𝜋

action (𝑎))

ℒ

State (𝑠))
Action (𝑎))

Reward (𝑟))

Next State (𝑠)'()

𝑎! = 𝜖 − argmax" 8𝑄(𝑠! , 𝑎; 𝑤&)	

mini-
batch

update 𝑤
8𝑄(𝑠& , 𝑎; 𝑤&) 1

ℒ& = 𝑟& + 𝛾 max#!∈𝒜
8𝑄 𝑠&$%, 𝑎; 𝑤* − 8𝑄 𝑠& , 𝑎&; 𝑤&

)

12

evaluation network

target network

Copy every
𝑘 timesteps

8𝑄 𝑠&$%, 𝑎&; 𝑤*  2

𝑠&

𝑠&$%

𝑟& , 𝑎&

𝑤&

𝑤*



Deep Q-Networks (DQNs)

§ How does it work?
§ A bag of tricks for stabilizing learning:

1. Experience Replay.
2. Separate, frozen target Q-network.
3. Apply reward clipping:

§ Problem: Large rewards result in large variances in Q-values.
§ Different games have different reward values.
§ Oscillations and divergence during learing.

§ Solution: Clip the rewards (and loss terms) to a range [−1.0, 1.0].
§ Avoids oscillations by normalizing rewards when training for multiple games.

§ Prevents Q-values from becoming too large.
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Deep Q-Networks (DQNs)
How does it work?
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Deep Q-Networks (DQNs)

§ Extension #1: Double DQN (DDQN)
§ Problem: Upward positive bias (overestimation of Q-values) in targets:

𝑦' = 𝑟 + 𝛾 max
B$∈𝒜

)𝑄(𝑠I, 𝑎I; 𝜗')

§ DDQN splits action selection and action evaluation:

𝑦' = 𝑟 + 𝛾 )𝑄 𝑠I, 𝑎𝑟𝑔max
B$∈𝒜

)𝑄 𝑠I, 𝑎I; 𝜃' ; 𝜗'

§ Use estimations from main Q-network to select actions
§ Use estimations from target Q-network to evaluate actions
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Deep Q-Networks (DQNs)

§ Extension #1: Double DQN (DDQN)
§ DDQN splits action selection and action evaluation:

𝑦' = 𝑟 + 𝛾 )𝑄(𝑠I, argmax
B$∈𝒜

)𝑄 𝑠I, 𝑎I; 𝜃' ; 𝜗')

§ Use estimations from main Q-network to select actions
§ Use estimations from target Q-network to evaluate actions
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Deep Q-Networks (DQNs)

§ Extension #1: Double DQN (DDQN)
§ DDQN splits action selection and action evaluation:

𝑦' = 𝑟 + 𝛾 )𝑄(𝑠I, argmax
B$∈𝒜

)𝑄 𝑠I, 𝑎I; 𝜃' ; 𝜗')

§ Use estimations from main Q-network to select actions
§ Use estimations from target Q-network to evaluate actions
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Deep Q-Networks (DQNs)

§ Extension #2: Prioritized Experience Replay
§ Some experiences retain more information for learning than others
§ Problem: Experience Replay Sampling is uniform sampling
§ Prioritized Experience Replay samples mini-batches of based on their absolute Bellman error 𝑒:

𝛿 = 𝑟 + 𝛾 max
B$∈𝒜

𝑄 𝑠I, 𝑎I − 𝑄 𝑠, 𝑎
𝑒 = |𝛿|

§ Using DDQN notation:

𝑦' = 𝑟 + 𝛾 )𝑄 𝑠I, 𝑎𝑟𝑔max
B$∈𝒜

)𝑄 𝑠I, 𝑎I; 𝜃' ; 𝜗'
𝛿 = 𝑦' − 𝑄 𝑠, 𝑎; 𝜃'
𝑒 = |𝛿|
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Deep Q-Networks (DQNs)

§ Extension #2: Prioritized Experience Replay
§ Some experiences retain more information for learning than others
§ Problem: Experience Replay Sampling is uniform sampling
§ Prioritized Experience Replay leads to much faster learning

55
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Deep Q-Networks (DQNs)

§ Extension #3: Dueling Architectures
§ Split Q-network into two channels:

§ Action-independent value function 𝑉(𝑠; 𝐯)
§ Action-dependent advantage function 𝐴(𝑠, 𝑎;𝐰)

à 𝑄 𝑠, 𝑎 = 𝑉 𝑠; 𝐯 + 𝐴(𝑠, 𝑎;𝐰)
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𝑄 𝑠, 𝑎; 𝜃, 𝛼, 𝛽

= 𝑉 𝑠; 𝜃, 𝛽 + 𝐴(𝑠, 𝑎; 𝜃, 𝛼 	−
1
|𝒜|	/-+

𝐴(𝑠, 𝑎.; 𝜃, 𝛼)
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Abstract

The deep reinforcement learning community has made sev-
eral independent improvements to the DQN algorithm. How-
ever, it is unclear which of these extensions are complemen-
tary and can be fruitfully combined. This paper examines
six extensions to the DQN algorithm and empirically studies
their combination. Our experiments show that the combina-
tion provides state-of-the-art performance on the Atari 2600
benchmark, both in terms of data efficiency and final perfor-
mance. We also provide results from a detailed ablation study
that shows the contribution of each component to overall per-
formance.

Introduction
The many recent successes in scaling reinforcement learn-
ing (RL) to complex sequential decision-making problems
were kick-started by the Deep Q-Networks algorithm (DQN;
Mnih et al. 2013, 2015). Its combination of Q-learning with
convolutional neural networks and experience replay en-
abled it to learn, from raw pixels, how to play many Atari
games at human-level performance. Since then, many exten-
sions have been proposed that enhance its speed or stability.

Double DQN (DDQN; van Hasselt, Guez, and Silver
2016) addresses an overestimation bias of Q-learning (van
Hasselt 2010), by decoupling selection and evaluation of
the bootstrap action. Prioritized experience replay (Schaul
et al. 2015) improves data efficiency, by replaying more of-
ten transitions from which there is more to learn. The du-
eling network architecture (Wang et al. 2016) helps to gen-
eralize across actions by separately representing state val-
ues and action advantages. Learning from multi-step boot-
strap targets (Sutton 1988; Sutton and Barto 1998), as used
in A3C (Mnih et al. 2016), shifts the bias-variance trade-
off and helps to propagate newly observed rewards faster to
earlier visited states. Distributional Q-learning (Bellemare,
Dabney, and Munos 2017) learns a categorical distribution
of discounted returns, instead of estimating the mean. Noisy
DQN (Fortunato et al. 2017) uses stochastic network layers
for exploration. This list is, of course, far from exhaustive.

Each of these algorithms enables substantial performance
improvements in isolation. Since they do so by addressing

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Median human-normalized performance across
57 Atari games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.

radically different issues, and since they build on a shared
framework, they could plausibly be combined. In some cases
this has been done: Prioritized DDQN and Dueling DDQN
both use double Q-learning, and Dueling DDQN was also
combined with prioritized experience replay. In this paper
we propose to study an agent that combines all the afore-
mentioned ingredients. We show how these different ideas
can be integrated, and that they are indeed largely com-
plementary. In fact, their combination results in new state-
of-the-art results on the benchmark suite of 57 Atari 2600
games from the Arcade Learning Environment (Bellemare et
al. 2013), both in terms of data efficiency and of final perfor-
mance. Finally we show results from ablation studies to help
understand the contributions of the different components.
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Deep Q-Networks (DQNs)

§ Extension: Deep Recurrent Q-Learning Networks (DRQNs)
§ DQN in Atari needed to process more 

frames (4) in order to get an estimate 
of hidden state (e.g., ball velocity in pong)

§ Many real-world problems have 
partially observable states (POMDPs)

§ So instead of augmenting states in the 
POMDP case, why don’t we use an 
RNN (LSTM) instead?

§ Caution: use only when you have a true 
POMDP problem as it adds significant 
complexity during training. If you are
not sure, try augmenting
states first!
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Deep Q-Networks (DQNs)
Beyond just an extension: AlphaZero

59
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Value Function Approximation

§ In practice we often need to approximate the value function, because:
§ (Explicit) tabular representations require too much space
§ We want to generalize information across state (see also: POMDPs!)

§ For linear function approximation almost all convergence guarantees hold
§ For non-linear function approximation such guarantees cannot be given
§ But careful scheduling and several tricks help to stabilize training

§ But:
§ Non-linear function approximation is very sensitive to hyper-parameter tuning!

§ See also: https://www.youtube.com/watch?v=Vh4H0gOwdIg
(not directly related but definitely worth watching!)

§ And also: https://www.alexirpan.com/2018/02/14/rl-hard.html
(but please read with humor)
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The Deadly Triad

§ Stability in RL is a very serious thing!
§ Instability and divergence in RL mainly stem from

1. Function Approximation.
2. Bootstrapping.
3. Off-policy training.

§ Unfortunately, in most of the case we really use the full combination.
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binned encoding: if ci < z < ci+1, then �(z) returns ei the one-hot (standard basis) vector with a 1
in the i-th entry and zero elsewhere. For values of z that fall on the boundary, z = ci, the encoding
returns a vector with ones in both the i�1th and ith entries. Consider the below example for intuition.

Example. Assume [l, u] = [0, 1] and set the tile width to � = 0.25. Then the tiling vector c has
four tiles (k = 4): c = (0, 0.25, 0.5, 0.75). If we apply the tiling activation to z = 0.3, because
0.25 < 0.3 < 0.5, the output should be (0, 1, 0, 0). To see �(z) does in fact return this vector, we
compute each max term
max(c� z, 0) = (0, 0, 0.2, 0.45) and max(z� �� c, 0) = max(0.05� c, 0) = (0.05, 0, 0, 0).

The addition of the two is (0.05, 0, 0.2, 0.45) and so 1� I+(0.05, 0, 0.2, 0.45) = 1� (1, 0, 1, 1) =
(0, 1, 0, 0). The first max extracts those components in c that are strictly greater than z, and the
second max extracts those strictly less than z. The addition gives the bins that are strictly greater and
strictly less than the bin for z, leaving only the entry corresponding to that activated bin as 0, with all
others positive. The indicator function sets all nonzero entries to one and then using one minus this
indicator function’s output provides us the desired binary encoding. We rigorously characterize the
possible output cases for the activation in the Appendix A.2.1.

3.2 FUZZY TILING ACTIVATION (FTA)

The Tiling Activation provides a way to obtain sparse, binary encodings for features learned within
a NN. Unfortunately, the tiling activation has a zero derivative almost everywhere as visualized in
Figure 1(a). In this section, we provide a fuzzy tiling activation, that has non-zero derivatives and so
is amenable to use with backpropagation.

To design the FTA, we define the fuzzy indicator function2

I⌘,+(x)
def
= I+(⌘ � x)x+ I+(x� ⌘) (3)

where ⌘ is a small constant for controlling the sparsity. The first term I+(⌘ � x) is 1 if x < ⌘, and 0
otherwise. The second term I+(x�⌘) is 1 if x > ⌘, and 0 otherwise. If x < ⌘, then I⌘,+(x) = x, and
else I⌘,+(x) = 1. The original indicator function I+ can be acquired by setting ⌘ = 0. When ⌘ > 0,
the derivative is non-zero for x < ⌘, and zero otherwise. Hence the derivative can be propagated
backwards through those nonzero entries. Using this fuzzy indicator function, we define the following
Fuzzy Tiling Activation (FTA)

�⌘(z)
def
= 1� I⌘,+(max(c� z, 0) + max(z � � � c, 0)) (4)

where again I⌘,+ is applied elementwise.

We depict FTA with different ⌘s in Figure 3.1. For the smaller ⌘, the FTA extends the activation to the
neighbouring bins. The activation in these neighbouring bins is sloped, resulting in non-zero deriva-
tives. For this smaller ⌘, however, there are still regions where the derivative is zero (e.g., z = 0.3 in
Figure 1(b)). The regions where derivatives are non-zero can be expanded by increasing ⌘ as shown
in Figure 1(c). Hence we can adjust ⌘ to control the sparsity level as we demonstrate in Section A.5.

F

F

Figure 2: A visualization of an FTA layer

Figure 2 shows a neural network with FTA
applied to the second hidden layer and its
output y is linear in the sparse representation.
FTA itself does not introduce any new train-
ing parameters, just like other activation func-
tions. For input x, after computing first layer
h1 = xW1, we apply �⌘(z) to h1W2 2 Rd

to get the layer h2 of size kd. This layer
consists of stacking the k-dimensional sparse
encodings, for each element in h1W2.

3.3 GUARANTEED SPARSITY FROM THE FTA

We now show that the FTA maintains one of the key properties of the tiling activation: sparsity. The
distinction with many existing approaches is that our sparsity is guaranteed by design and hence is

2The word fuzzy reflects that an input can partially activate a tile, with a lower activation than 1, as an
analogy to the concept of partial inclusion and degrees of membership from fuzzy sets.

4

Fuzzy Tiling Activations

§ DQNs need target networks to
reduce the chance of divergence

§ Main reason:
§ The Q-Targets are non-stationary and

moving over subsequent gradient
descent steps

§ Idea:
§ Introduce a special activation function that produces

sparse representations!
i.e., updates on a particular Q-value does no affect nearby
Q-values that much.

§ FTA layers stack 𝑘-dimensional sparse encodings
for each element ℎ#𝑊! (ℎ# = 𝑥𝑊#)
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et al., 2015) parameterizes the action-value function Q✓ : S ⇥A 7! R by a NN. The bootstrap target
for updating a state-action value is computed by using a separate target NN Q✓� : S ⇥ A 7! R
parameterized by ✓�: yt = rt+1 + �maxa0 Q✓�(st+1, a0). The target NN parameter ✓� is updated
by copying from ✓ every certain number of time steps.

Online deep RL control problems can be highly nonstationary, for two primary reasons. First, the
environment itself could be highly nonstationary, or alternatively, partially observable. Second, the
data distribution is constantly shifting because of both the changing policy and shifting training
targets. The latter can be mitigated by using a target NN as described above, which has become
critical in successfully training many deep RL algorithms. However, it potentially slows learning as
the new information is not immediately used to update action-values; instead, the slower moving and
potentially out-dated target NN is used. Several works reported that successful training without a
target NN can improve sample efficiency of RL algorithms (Liu et al., 2019; van Hasselt et al., 2018;
Fan et al., 2020; Kim et al., 2019; Rafati & Noelle, 2019; Fan et al., 2020; Ghiassian et al., 2020). We
show that deep RL algorithms using our activation is able to achieve superior performance without
using a target NN, indicating the benefit of applying our method to nonstationary, online problems.

3 BINNING WITH NON-NEGLIGIBLE GRADIENTS

In this section, we develop the Fuzzy Tiling Activation (FTA), as a new modular component for neural
networks that provides sparse representations. We first introduce a new way to compute the binning of
an input, using indicator functions. This activation provides guaranteed sparsity but has a gradient of
zero almost everywhere. Then, we provide a smoothed version, resulting in non-negligible gradients
that make it compatible with back-propagation algorithms. We then prove that the fuzzy version is
still guaranteed to provide sparse representation and the sparsity can be easily tuned.

3.1 TILING ACTIVATION

The tiling activation inputs a scalar z and outputs a binned vector. This vector is one-hot, with a
1 in the bin corresponding to the value of z, and zeros elsewhere. Note that a standard activation
typically maps a scalar to a scalar. However, the tiling activation maps a scalar to a vector, as depicted
in Figure 1(a). This resembles tile coding, which inspires the name Tiling Activation; to see this
connection, we include a brief review of tile coding in the Appendix A.1. In this section, we show
how to write the tiling activation compactly, using element-wise max and indicator functions.

z

h1

h2

h3

h4

(a) TA, k = 4

z

h1

h2

h3

h4

(b) FTA, k = 4, ⌘ = 0.1

z

h1

h2

h3

h4

(c) FTA, k = 4, ⌘ = 0.25

Figure 1: a) The regular TA mapping R ! Rk, with each output element hi corresponds to a different bin. b)
The FTA with ⌘ > 0, permitting both overlap in activation, and nonzero gradient between the vertical red and
gray lines. c) Larger values for ⌘ extends the sloped lines further from either side of each plateau, increasing the
region that has non-negligible gradients.
Assume we are given a range [l, u] for constants l, u 2 R, where we expect the input z 2 [l, u]. The
goal is to convert the input, to a one-hot encoding, with evenly spaced bins of size � 2 R+. Without
loss of generality, we assume that u� l is evenly divisible by �; if it is not, the range [l, u] could be
slightly expanded, evenly on each side, to ensure divisibility. Define the k-dimensional tiling vector

c
def
= (l, l + �, l + 2�, ..., u� 2�, u� �). (1)

where k = (u� l)/�. The tiling activation is defined as

�(z)
def
= 1� I+(max(c� z, 0) + max(z � � � c, 0)) (2)

where I+(·) is an indicator function, which returns 1 if the input is positive, and zero otherwise. The
indicator function for vectors is applied element-wise. In Proposition 1, we prove that � returns a

3



Lesson of today
“Be careful with (non-linear) function approximation”
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