Z Fraunhofer

IS

Fraunhofer-Institut flr Integrierte
Schaltungen 1IS

"

Christopher Mutschler

Overview

2 = Fraunhofer

s

Value Function Approximation

= Challenge #1: In real world problems, the state space can be large
Backgammon: 1029 states
Computer Go: 10179 states
Robot arm: infinite number of states! (continuous)
= Problems with large MDPs:
There are too many states and/or actions to store in memory
It is too slow to learn the value of each state individually

LEE SEDOL
00:01:00

http://ai.berkeley.edu/lecture_slides.html https://www.youtube.com/watch?v=HT-UZkiOLv8

3 ~ Fraunhofer

s

Value Function Approximation

= Challenge #2: Generalization across states

Let's say we discover In naive Q-learning Or even this one:
through experience we know nothing
that this state is bad: about this state:

Pieter Abbeel: CS 188 Introduction to Artificial Intelligence. Fall 2018

. ~ Fraunhofer

s

Value Function Approximation

= Value Function Representations

= Exact:
A table with a distinct value for each case
V. one entry per s
Q: one entry for each (s, a) pair

= Approximate:

Approximate V or Q with a function Hs,w) deaw) deaw - Gsa,w)
approximator T T T T T
(e.g., NN, polynomials, RBF, ...)
D(s,w) = v.(s) w w w
q(s,a,w) = qr(s,a) T T T T
+ We only need to store the approximator parameters s s a s
- Convergence properties do not hold anymore David Silver. 2076.
-—

5 ~ Fraunhofer

s

Value Function Approximation

= VFA: Describe a state using a vector of features

= Features are functions from states to real numbers that capture important properties of the state

= Example features for Pac Man:
Distance to closest ghost
Distance to closest dot
Number of ghosts

6 ~ Fraunhofer

s

Value Function Approximation

= Qur goal is to learn good parameters w that approximate the true value function well:

C= (Q*(s, a) - Q" (s, a; W))2
=(Q"(s,a) — ¢(s,a)'w)?
‘ 9 = 2 ¢(s,a)(Q*(s,a) — (s,)W)

ow

ac
‘) wew —ng,

wew+20¢(s,0) (0 (s,0) —Q™(s,aw))

r+ ymaxyQ(s’,a’) Q-Learning with Linear VFA
Q¥ (s,a) = r+ yQ(s',a) SARSA with Linear VFA
G MC with Linear VFA

\

; ~ Fraunhofer

s

Value Function Approximation

= Qur goal is to learn good parameters w that approximate the true value function well:

starting

Estimate g,
e.g., lterative Policy Evaluation

Generatenn’' >«
e.g., e-greedy Policy Improvement

\

6 ~ Fraunhofer

s

Value Function Approximation

= Qur goal is to learn good parameters w that approximate the true value function well:

starting
dw =~ q

Estimate

e.g., Policy Evaluation
Generatenn’' >«

e.g., e-greedy Policy Improvement

\

o ~ Fraunhofer

s

Value Function Approximation

= Linear Value Function Approximation (careful: non-linear features)

Q" (s,a;w) = ¢(s,a)Tw

Housing Price Prediction

400
X
300 + X X
. X % X X
maoogs 01 XX
X
100 =+ X
0 3 3 $ t 1
0 500 1000 1500 2000 2500

Size in feet?
Coursera ML Course

\

10 ~ Fraunhofer

s

Value Function Approximation

= Linear Value Function Approximation (careful: non-linear features)
0™ (s,a;w) = ¢p(s,a)Tw

= Example features: Polynomial Basis

k
o
¢i(s,a;) = l_L_lsj Y, ¢ €1{01,..,n},a, €A

Action A Action B Action C Action D
> s

\

» ~ Fraunhofer

s

Value Function Approximation

= Linear Value Function Approximation (careful: non-linear features)
0™ (s,a;w) = ¢p(s,a)Tw
= Example features: Polynomial Basis, for instance:

(51,52)T - (1, 51,5215152)T

2 .2 2
(51»52) - (1, S1,Sz,5152»51152»5152r5152»5152)

Action A Action B Action C Action D
> s

\

2 ~ Fraunhofer

s

Value Function Approximation

= Linear Value Function Approximation (careful: non-linear features)
0™ (s,a;w) = ¢p(s,a)Tw
= Example features: Fourier Basis

¢i(5; aj) = cos(ims), S E [(),1],aj €A

-1 -1 -1 -1
0 1 0 1 0 1 0 1

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

3 ~ Fraunhofer

s

Value Function Approximation

= Linear Value Function Approximation (careful: non-linear features)

Q" (s,a;w) = ¢(s,a)Tw

= Example features: Tile Coding

Tiling 1 —

Tiling2 — _T1_ _TI__TI__TI__
.1. ing2 " . .
Tiling 3 : :
Tiling 4 =0 8 ¥,
: : Four active
: wn | tiles/features
:‘ I ~—— overlap the point
i | — and are used to
\ Point in i , represent it
state space : , , , :
to be NI N DANERS, [DU W T
represented

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

” ~ Fraunhofer

s

Value Function Approximation

= Linear Sarsa with Coarse Coding' in Mountain Car

15

MOUNTAIN CAR Goal

/]

/) #
4 /
7 - $ 2
/
0 & S
= .;.‘i..u; [€) 0 £
1,0 "% ao

Episode 90%\7

Y

David Silver. 2016.

1, Tile Coding with circles*

~Z Fraunhofer

s

Value Function Approximation

= Linear Value Function Approximation (careful: non-linear features)
0™ (s,a;w) = ¢p(s,a)Tw
= Example features: Radial Basis Functions (RBFs)

. Is — ¢;ll?

i

), ajchl

i-1 G Citl

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

6 ~ Fraunhofer

s

Value Function Approximation

= Linear Sarsa with Radial Basis Functions in Mountain Car

120~
1004
804 -
60~
40~

20

Pos. 20 :
. ’/‘11; 10 10 J t\ob‘“

Matt Kretchmar, 1995

\

7 ~ Fraunhofer

s

Value Function Approximation

= Why Linear VFA?
= Convergence of Control Algorithms

____Algorithm _| Table — M

Monte-Carlo Control

SARSA \/ (\/) X
Q-learning v X X

(V') = chatters around near-optimal value function

\

5 ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:
Can we approximate any V-/Q-value function with a linear FA?
s it easy to find such a linear FA?

\

10 ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

Can we approximate any V-/Q-value function with a linear FA?
— (But the proof is out of the scope of this class...)

\

2 ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? —

A

= Example Gridworld problem:
No obstacles,
deterministic actions (UDLR)
no discounting y

reward is —1 everywhere
except at goal.

10 |1 O

\

21 ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:
s it easy to find such a linear FA? —

= Represent state s by a feature vector:

1

¢(s) = ["
y

= Perform linear VFA:

Wo
Vis;w) =¢(s)Tw=[1 x y] [W1]
W2

V(s;w) = wg + wyix + wyy

22

A

10

\

~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? —

< X 0
= |s there a good linear approximation? — 0o
) 10
Vis;w)=[1 x y] [—1] y
—1
=10—x—y=10—|x + y|
= Note: Manhattan Distance. v

\

2 ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? —

« X 0
= What if the reward changes (see Fig.)? 0
= Linear VFA:
V(s;w) = p(s)"w y

-0 :

= Wy + w1 X + WYy v

= |s there a good linear approximation?
— NO!

\

”s ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:
s it easy to find such a linear FA? —

= Linear VFA with a new feature z:

Vis;w) = ¢p(s)™w

Wo

|41

W»

w3

= Wy + W1X + Wsyy + W3Z

=1 x y Z]

= s there a good linear approximation now?

-

z=13-x|+1[3-yl

25

.3 X0
0
y
10 3
=

~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? - NO!

Feawre [Desoron _________

Landing Height

Eroded Piece Cells

Row Transitions

Columns Transitions

Holes

26

Height of last piece is added.

#rows eliminated in the last move
multiplied with the #bricks eliminated
from the last piece added.

#horizontal full to empty or empty to
full transitions between the cells on
the board.

Same thing for vertical transitions.

#empty cells covered by at least one
full cell.

httos://www.flaticon.com/free-icon/tetris 1006985

Thierry, C. and Scherrer, B.: Improvements on Learning Tetris with Cross-Entropy. 2010.

\

~ Fraunhofer

s

https://www.flaticon.com/free-icon/tetris_1006985

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? - NO!

Feawre [Desorton _______

Board Wells Z (1+2+ -+ depth(w))
w € wells

Height of the pth column of the

Column Height board.

Absolute difference
Column Difference |hp — hpiql
between adjacent columns.

Maximum Height Maximum pile height: mﬁx hp.

Number of empty cells covered by at
least one full cell.

Holes

httos://www.flaticon.com/free-icon/tetris 1006985

Thierry, C. and Scherrer, B.: Improvements on Learning Tetris with Cross-Entropy. 2010.

\

27 ~ Fraunhofer

s

https://www.flaticon.com/free-icon/tetris_1006985

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? - NO!

N T

Existence of wall to all four wind

Nearby Walls directions.

Direction of the nearest target
Nearest Target where it is preferable for the Ms.
Pac-Man to move.

Existence of a ghost to all four

Nearby Ghosts wind directions.

Describes if Ms. Pac-Man can

EfeiEns ol [Eepe move freely or if she is trapped.

Tziortziotis, N. and Tziortziotis, K. and Blekas, K.: Play Ms. Pac-Man Using an Advanced Reinforcement Learning Agent. 2014.

\

2 ~ Fraunhofer

s

Value Function Approximation (VFA)

= There are two important questions to answer with VFA:

s it easy to find such a linear FA? - NO!

We applied LSPI with a set of 10 basis functions for each of the 3 actions, thus a total
of 30 basis functions, to approximate the value function. These 10 basis functions included
a constant term and 9 radial basis functions (Gaussians) arranged in a 3 x 3 grid over the
2-dimensional state space. In particular, for some state s = (0,9) and some action a, all
basis functions were zero, except the corresponding active block for action a which was

[[I

ls—pmlP s —pel® s — s = ol
(1’ e 202 , e 202 e 202 e 202)T ,

) % Tossn g

where the ;s are the 9 points of the grid {—n/4, 0, +7/4} x {-1, 0, +1} and 02 = 1.

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003

29

\

~ Fraunhofer

s

Value Function Approximation (VFA)

30

There are two important questions to answer with VFA:

s it easy to find such a linear FA? - NO!

The goal in the bicycle balancing and riding problem (Randlgv and Alstrgm, 1998) is to
learn to balance and ride a bicycle to a target position located 1 km away from the starting
location. Initially, the bicycle’s orientation is at an angle of 90° to the goal. The state
description is a six-dimensional real-valued vector (6, 9,0.;,&1,&),), where 6 is the angle of
the handlebar, w is the vertical angle of the bicycle, and 1) is the angle of the bicycle to
the goal. The actions are the torque 7 applied to the handlebar (discretized to {—2,0,+42})
and the displacement of the rider v (discretized to {—0.02,0,+0.02}). In our experiments,
actions are restricted so that either 7 = 0 or v = 0 giving a total of 5 actions.'> The noise
in the system is a uniformly distributed term in [—0.02,4+0.02] added to the displacement
component of the action. The dynamics of the bicycle are based on the model of Randlgv
and Alstrgm (1998) and the time step of the simulation is set to 0.01 seconds.

The state-action value function Q(s,a) for a fixed action a is approximated by a linear
combination of 20 basis functions:

(1, w, w, w2, W*w, 0, 0, 02, 6, 00, wd, wb?, W0, ¥, V2, PO, ¥, ¥*, VO)T |

where 1/77 =m—1) for ¢ > 0 and J; = —m — 1 for 1» < 0. Note that the state variable &
is completely ignored. This block of basis functions is repeated for each of the 5 actions,
giving a total of 100 basis functions (and parameters).

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003

6th iteration

(crash) e
Starting (crash) \\\
Position
N — W/
0 / N e 2\
[N 3rd iteration — ‘\
/ {
2nd iteration (crash) \ (\
Goal
-200 Sth and 7th
iteration
4th and 8th
—400 iteration
/
600 o
/ .
1stiteration
, , . . \ .)
-200 o 200 400 600 800 1000 1200

~ Fraunhofer

s

Value Function Approximation (VFA)

= |dea: Why don’t we replace linear approximation with NNs?
Because theory tells us that this doesn’t work out

___Algorithm ___| Table L m

Monte-Carlo Control

SARSA \/ (\/) x
Q-learning v X X

(\/) =chatters around near-optimal value function

\

31 ~ Fraunhofer

s

Value Function Approximation (VFA)

= |dea: Why don’t we replace linear approximation with NNs?
Because theory tells us that this doesn’t work out
But in some applications, it did ©!
= World’s Best Backgammon Player:
Neural network (NN) with 80 hidden units
Used RL for 300.000 games of self-play
One of the top players in the world!

32

httos://www.flaticon.com/free-icon/backgammon 683899

\

~ Fraunhofer

s

https://www.flaticon.com/free-icon/backgammon_683899

Value Function Approximation (VFA)
Parenthesis: Gerry Tesauro’s TD-Gammon (‘92, ‘94, '95)

predicted probability
of winning, V,

TD error, vV, -V,

* Rule to update the network weights w:

t
W < W + a(Vt+1 - Vt) z At_kaVk
k=1

Tesauro, G.: Temporal difference learning and TD-Gammon. 1995.
see also: https.//users.auth.qr/kehagiat/Research/Game Theory/12CombBiblio/BackGammon.html

3 ~ Fraunhofer

s

\

https://users.auth.gr/kehagiat/Research/GameTheory/12CombBiblio/BackGammon.html

Value Function Approximation (VFA)
Parenthesis: Gerry Tesauro’s TD-Gammon (‘92, ‘94, '95)

|
predicted probability 06 : :
. . B 10 hidden units
of winning, V, 20 hidden units
e 05 L 40 hidden units
% 80 hidden units
Q
TD error, V, -V, & o4
>
[
. 08|
m !
g’ 2
hidden units (40-80) g o2f sEoe
o wx PRE o
T 0| g WX
x R
o oFe A, AT
XgtT g
01 ' '
100000 1e+006 1e+007
number of self-play training games
Tesauro, G.: Temporal difference learning and TD-Gammon. 1995.
see also: https.//users.auth.qr/kehagiat/Research/Game Theory/12CombBiblio/BackGammon.html
7
3 ~ Fraunhofer

s

https://users.auth.gr/kehagiat/Research/GameTheory/12CombBiblio/BackGammon.html

Value Function Approximation (VFA)

= |dea: Why don’t we replace linear approximation with NNs?
Because theory tells us that this doesn’t work out

Algorithm L m

Monte-Carlo Control

SARSA \/ (\/) X
Q-learning v X X

(\/) =chatters around near-optimal value function

= Besides some few hand-crafted and tuned successes NNs have not been managed to be applied “as is” to RL

35 = Fraunhofer

s

Deep Q-Networks (DQNs)

= Then a game-changing result was published in Nature:
DQN from DeepMind (now Google DeepMind)

Surpassed human player in 49 games of the Atari 2600 series
Same RL algorithm to learn a policy in each game

End-to-end: Only image pixels as input

“The" contribution that initiated a round of huge investments in RL

https://storage.googleapis.com/deepmind- https://www.aarondefazio.com/adefazio-rl2014.pdf
media/dqn/DQNNaturePaper.pdf

\

36 ~ Fraunhofer

s

Deep Q-Networks (DQNs)

%0008 %0001 %009 %00S %00% %00€ %00C %00L %0
| _.::]]]]]]

JoWeo1 Jeaur] sog %e|

e |

10A9]-UBINY MOjoq

A0 JO |9A3J-URINY J& %9L

v o

S o wozh [

23 o IO

Z € sy ST

c S sz Y
o

S o

c o

v

c9

a g

A

WG

4+

= 3

=

v s s [

2 g m

£ .c

2=

c Q

c o

U o

mD

< €

S S

(O Y=

mN
(o4

e

— QO

abuanay s,eWnzajuojy

ak3 ajenud
Jejines
ajiqisol4
SpI0JBISY
Ueword ‘s
Bumog
Aung sgnog
1sanbeag
aInjuap
ually
Jepiuy

prey Jeary
ISIeH yueg
apadiua)
puewwo? Jaddoy

JOM JO piezipy

auo7 apeg
Xuajsy
‘OY3IH
88,0

£ay20H 89|
umoq pue dn
Aquaq buysi4
oinpu3

Olid awiL
Remaal4
Jajse|y n4-Buny
Weyyuejn),
Japry weag
SJapeAu| aoedg
Buod

puog sawer
SIETY
ooJebuey|
Jauuny peoy
Jnessy

[[ruy

SWes) S|y) sweN
#OejY uowsq
Jaydos
Jaqui Azei)
siuepy
juejoqoy
Jauung Jeig
Inoyealg
Buixog

|[equid O8pIA

https://storage.googleapis.com/deepmind-media/dqgn/DQNNaturePaper.pdf

raunhofer

N

37

s

Deep Q-Networks (DQNs)

= How does it work?

A convolutional neural network reads the image from the game
(i.e., a framestack that uses the last N = 4 frames).

The CNN is a value function approximator for the Q(s, a) function.

The reward is the game score.
The network weights are tuned using backpropagation signals of the rewards.

S a1 ’ e S a w Gonvolution Gonvolution Fully connected Fully connected

ft
N

w

!

S

=

3
£

HORAANE I
TIrEEErEeER
(@] (] (@] (¢] (©] (¢] [e)] (]

o\

o-

/&
/

http://wwwO.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/FA.pdf https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

\

~ Fraunhofer

38
s

Deep Q-Networks (DQNs)

= How does it work?
DQNs are ,,Q-Learning on steroids” (Deep NN as VFA)
Training possible in Tensorflow (or Pytorch, Keras, ...)
Objective function for gradient descent:

L(w;) = IEs,a,r,s'~Di[(Yi —Q(s,q, W))Z]

Q -Learning with NN VFA Q-Learning with Linear VFA
Approximated Q-function with NN » Approximated Q-function with
and parameters w: parameters w and feature vector ¢
Q(s,a) = Q(s,a; w™) Q(s,a) = wi¢(s,a)
» Target value: « Target value:
— Al ! ATy — - T ro
yi=r+ymaxQ(s’,aiw) yi=r+ymaxw; ¢(s’,a)
« Updating: « Updating:
wipr = w; +aly; — Q(s, a; Wi)]vwiQ(S: a; w;) Wirs = w; + aly; — wi ¢(s,a)d(s, a)

Every k steps: w™ <« w;

\

30 ~ Fraunhofer

s

Deep Q-Networks (DQNs)

40

action
ENV ion (a;)

a; = € — argmax, Q(s;, a)

Q-Learning

Q(spap) « Q(sp,ap) +a [rt +vy m;lx Q(st+1,a) — Q(s¢, at)]

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

action (a
ENY (ar)

State (s¢)

Action (a;)

Reward (13)

Next State (s¢41)

P o M_—_—_—_—__T_E-_—-__-_ET—-______ T TR TR TR RR TR R TROERTRmmRM MM —— -~
/, a, = € — argmax, Q(s;, a; w) RN
I \
| n |
! 1
! 1
I two passes: s;, S;.1 :
: [
! 1
; |
; |
: Q(Si!ai; w) ! :
, Q(Sis1, a; W) 2 !
; |
! [
! 1
; |
I > L < I
! [
1
‘\ DQN VO 1 L= [T'i + Yg}gﬁ Q(5i+1'ai w) — Q(si'ai; W)]Z ,I
N ! , o ‘ .
~. A /7 ==
M NN e e e P L -*" Z Fraunhofer

s

Deep Q-Networks (DQNs)

= How does it work?
= A bag of tricks for stabilizing learning:
Experience Replay:
Problem: Experiences are correlated over time.
— Oscillations and divergence during learning.
Solution: Random sampling of experience mini-batches from a memory:.

— Samples can be re-used to increase data efficiency.
— Breaking correlations by randomization reduces variance.

S1,4d1, 12,52
S2,d2,13,53 — S,a,rs
53, d3, I3, 54

Stydty lt+1,St+1 — | Sty at, Ft+1, St+1

http:.//wwwO.cs.ucl.ac.uk/staft/d.silver/web/Resources files/deep rl.pdf

\

42 ~ Fraunhofer

s

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/deep_rl.pdf

Deep Q-Networks (DQNs)

action (a
ENY (ar)

State (s¢)

Action (a;)

Reward (13)

Next State (s¢41)

P o M_—_—_—_—__T_E-_—-__-_ET—-______ T TR TR TR RR TR R TROERTRmmRM MM —— -~
/, a, = € — argmax, Q(s;, a; w) RN
I \
| n |
! 1
! 1
I two passes: s;, S;.1 :
: [
! 1
; |
; |
: Q(Si!ai; w) ! :
, Q(Sis1, a; W) 2 !
; |
! [
! 1
; |
I > L < I
! [
1
‘\ DQN VO 1 L= [T'i + Yg}gﬁ Q(5i+1'ai w) — Q(si'ai; W)]Z ,I
N ! , o ‘ .
~. A /7 ==
B NN e e P L -*" Z Fraunhofer

s

Deep Q-Networks (DQNs)

44

State (s;)

Action (a;)

Reward (13)

Next State (s¢41)

two passes: s;, ;11

A
S

51,Q4,71,S2

A 4

So,092,17,S3
S§3,03,13,S4

DQN v0.2

mini-
batch

ENV

A

update w

> L

action (a;)

a, = € — argmax, Q(s;, a; w)

T

Q(spasw)
Q(5i+1'ai w) 2

~ N 2
L= [T’i + Y max QG aw)y =00, a; W)]

>
<

—————————————————_’

-~

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

= How does it work?
= A bag of tricks for stabilizing learning:

Separate, frozen target Q-network:
Problem: Target Q-values y; =r +y max Q(s’,a’; w;_;) change constantly.
a
— Oscillations and divergence during learning.

\

45 ~ Fraunhofer

s

Deep Q-Networks (DQNs)

= How does it work?
= A bag of tricks for stabilizing learning:

Separate, frozen target Q-network:

Solution: Two Q-networks:
- Frozen Target Q-network with parameters w™ predicts Q-learning targets Q(s’,a’; w;).
- Dynamic Main Q-network with parameters w evaluates current Q-values Q(s’, a’; wi,1).

R 2
- Perform a gradient descent step (w.r.t. w) towards (yl- — Q(s, a; Wi))

Added delay breaks correlations between Q-network and target.

Avoids oscillations by having fixed targets.
(Note: We periodically update the target Q-network by copying the weights w~ « w;.)

Reduces chance of divergence.

\

45 ~ Fraunhofer

s

Deep Q-Networks (DQNs)

47

State (s;)

Action (a;)

Reward (13)

Next State (s¢41)

two passes: s;, ;11

A
S

51,Q4,71,S2

A 4

So,092,17,S3
S§3,03,13,S4

DQN v0.2

mini-
batch

ENV

A

update w

> L

action (a;)

a, = € — argmax, Q(s;, a; w)

T

Q(spasw)
Q(5i+1'ai w) 2

~ N 2
L= [T’i + Y max QG aw)y =00, a; W)]

>
<

—————————————————_’

-~

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

48

State (s;)

Action (a;)

Reward (13)

Next State (s¢41)

A
S

51,Q4,71,S2

A 4

S2,02,72,53
S§3,03,13,S4

T'i ,a i | - e

ENV

Copy every
k timesteps

target network

uuuuuuuuuu

\update w

\
> L

Q(siy,aw™) 2

A A

~ N 2
L= [ri + Vtrll}eaﬁ QGiLaw) =00, a; Wi)]

action (a;)

= € — argmax, Q(s;, a; w;)

T

Q(Si'a; wy) !

= Fraunhofer

s

Deep Q-Networks (DQNs)

L7

= How does it work?
= A bag of tricks for stabilizing learning:

Apply reward clipping:
Problem: Large rewards result in large variances in Q-values.
Different games have different reward values.
Oscillations and divergence during learing.

Solution: Clip the rewards (and loss terms) to a range [—1.0, 1.0].

Avoids oscillations by normalizing rewards when training for multiple gam
Prevents Q-values from becoming too large.

49

A bug in the implementation #16

karpathy opened this issue on Dec 18, 2016 - 6 comments

karpathy commented on Dec 18, 2016

Hello, | spotted what | believe might be a bug in the DQN implementation on
line 291 here:

https://github.com/devsisters/DQN-
tensorflow/blob/master/dgn/agent.py#L291

The code tries to clip the self.delta with tf.clip_by_value, | assume
with the intention of being robust when the discrepancy in Q is above a
threshold:

self.delta = self.target_g_t - q_acted

self.clipped_delta = tf.clip_by_value(self.delta, self.min_delta
self.global_step = tf.Variable(®, trainable=False)

self.loss = tf.reduce_mean(tf.square(self.clipped_delta), name='

However, the clip_by_value function's local gradient outside of the
min_delta, max_delta range is zero. Therefore, with the current code
whenever the discrepancy is above min/max delta, the gradient becomes
exactly zero in backprop. This might not be what you intend, and is
certainly not standard, | believe.

I think you probably want to clip the gradient here, not the raw Q. In that
case you would have to use the Huber loss:

def clipped_error(x):
return tf.select(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs

and use this on this.delta instead of tf.square . This would have the
desired effect of increased robustness to outliers.

) (ks7) #1a) (@17)(f1) (07

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

How does it work?

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do

Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;) e

Fort=1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax, Q(¢(s;),a; 0) g L m
Execute action a, in emulator and observe reward r, and image x; 4 ,
Set s¢41 =5;,a:,%+1 and preprocess ¢, . ; =¢(s¢11)

Store transition (¢t’at’rh¢t+ 1) inD w PARAMETERS
Sample random minibatch of transitions <¢j,aj,rj,¢j+ 1) from D il

T if episode terminates at step j+ 1
Sety;=

rj+7y maxy Q<¢j+l,a’;0_> otherwise

Perform a gradient descent step on (yj -0 (¢j,aj; 0))2 with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For

httos://sites.qgoogle.com/view/deep-ri-bootcamp/lectures

50

OBSERVATIONS

O ©O

-,

\

~ Fraunhofer

s

https://sites.google.com/view/deep-rl-bootcamp/lectures

Deep Q-Networks (DQNs)

= Extension #1: Double DQN (DDQN)

= Problem: Upward positive bias (overestimation of Q-values) in targets:
yi=r+y (s’,a';9;)

= DDAQN splits action selection and action evaluation:

yi=r+y argmax Q(s’,a’; 6;)
a’'eA

Use estimations from main Q-network to select actions
Use estimations from target Q-network to actions

51

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

= Extension #1: Double DQN (DDQN)

= DDAQN splits action selection and action evaluation:

yi=1r+Yy argmax O(s',a'; 0;)
a'eA

Use estimations from main Q-network to select actions
Use estimations from target Q-network to actions

Algorithm 1 Double Q-learning
1: Initialize Q4,QP,s
2: repeat
3: Choose a, based on Q“(s,-) and QB (s, -), observe , s’

4 Choose (e.g. random) either UPDATE(A) or UPDATE(B)

5 if UPDATE(A) then

6: Define a* = arg max, Q4 (s, a)

7 Q% (s,a) < Q*(s,a) + a(s,a) (r +1QP (s, a*) — Q% (s, a))

8 else if UPDATE(B) then

9: Define b* = arg max, Q5 (s, a)
10: QP (s,a) + Q" (s,a) + a(s,a)(r +1Q4(s',b*) — Q" (s, a))
11: endif

12: s+ &
13: until end

Hasselt, H. V. (2010). Double Q-learning. In Advances in Neural Information Processing Systems (pp. 2613-2621).

\

52 ~ Fraunhofer

s

Deep Q-Networks (DQNs)

53

Extension #1: Double DQN (DDQN)
DDQN splits action selection and action evaluation:

y; =1 +y0(s' argmaxQ(s’,a’;6,);9;)
a'eA

Use estimations from main Q-network to select actions
Use estimations from target Q-network to evaluate actions

Space Invaders Time Pilot Zaxxon

DQN estimate

et
ot

waDouble DQN estimate

_Double DQN true value
DQN true value

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Training steps (in millions)

Value estimates

Hasselt, H. V. (2015). Deep Reinforcement Learning with Double Q-learning. In AAAI (pp. 2094-2100).

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

= Extension #2: Prioritized Experience Replay

= Some experiences retain more information for learning than others

= Problem: Experience Replay Sampling is uniform sampling

= Prioritized Experience Replay samples mini-batches of based on their absolute Bellman error e:

S=r+ymaxQ(s’,a’) — Q(s,a)
a'eA
e = |0]

= Using DDQN notation:
yi=1+yQ (S', argmax Q(s’,a’; 6;) ; 19i)

a'eA
§=y,—Q(s,a6;)
e = |9

54

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

= Extension #2: Prioritized Experience Replay

= Some experiences retain more information for learning than others
= Problem: Experience Replay Sampling is uniform sampling

= Prioritized Experience Replay leads to much faster learning

140% - _ : : . 140% 4

120%4 - 120% -
) g
S 100% 4= o omi o s s s e 8 L 0000 O e s v v
O]
(%]
* [
B GO% o S 1B0% SRR
: £
o °
N 60% 4. .- Y 60%q-eeeenenne
s 5
£ £
o 40%4--- 5 40%:] ieumsis
c

P11,) [T e LR o oL R A AN N R S A P A AR ©

0% - r - 0% - - -
0 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1e6)
== uniform == rank-based == proportional - uniform DQN
https://arxiv.org/pdf/1511.05952.pdf
=
55 ~ Fraunhofer

s

https://arxiv.org/pdf/1511.05952.pdf

Deep Q-Networks (DQNs)

= Extension #3: Dueling Architectures

= Split Q-network into two channels:
Action-independent value function V(s;v)
Action-dependent advantage function A(s, a; w)
2 0Q(s,a) =V(s;v) + A(s,a; w)

Q(s,a;0,a,B)

1
=V(s;6,B) + (A(s,a;0,a) — mz ,A(s, a’;0,a)
a

‘ S
‘ .
/
¢ a9
‘
/ v
‘
/
/
/
‘
/
‘

Wang et al.: Dueling Network Architectures for Deep Reinforcement Learning

\

56 ~ Fraunhofer

s

Deep Q-Networks (DQNs)

DQN
— DDQN
— Prioritized DDQN
— Dueling DDQN
200% . A3C N
o — Distributional DQN "
§ — Noisy DQN A
S == Rainbow /
(]
= W
©
g ..
g J 5 'IAM \A 2
c 1
© I 'ﬂ
| A ' I
£ 100%- . ,'A{"d" L7 "lh
< : Wy
C | \\1
s / Y
©
]
= /‘
........... b/ [
P
P i
/ :
oy, Wl | | |
0% 7 44 100 200
Millions of frames
Hessel et al.: Rainbow: Combining Improvements in Deep Reinforcement Learning
57

\

~ Fraunhofer

s

Deep Q-Networks (DQNs)

]] Q-Values /7 18
= Extension: Deep Recurrent Q-Learning Networks (DRQNs)

= DQN in Atari needed to process more / e / Il
frames (4) in order to get an estimate 1 N (|
of hidden state (e.g., ball velocity in pong) 64-filters 64

= Many real-world problems have R
partially observable states (POMDPs) 1’

= So instead of augmenting states in the i (?J’?,’Kf. I
POMDP case, why don’t we use an Ax4 64
RNN (LSTM) instead? DEHCE)

= Caution: use only when you have a true s o— o\
POMDP problem as it adds significant = 32-filters T |
complexity during training. If you are ‘ ’ Sy l ’ A
not sure, try augmenting 7N 20 /N e
states first! . / - /

M M 84
L (. -

https://arxiv.org/pdf/1507.06527.pdf

\

55 ~ Fraunhofer

s

https://arxiv.org/pdf/1507.06527.pdf

Deep Q-Networks (DQNs)

Beyond just an extension: AlphaZero

102 Simulations

=) Amount of Search per Decision

cfolclclololelclo

3 b < © T g h

Human State-of-the-Art
102 Simulations 104 Simulations 10° Simulations ~ 10¢ Simulations Grandmaster AlphaZero Chess Engines
@
" & . 100's 10,000's 10,000,000's
of moves of moves of moves

-0

4

)@*G‘—Q
0070

< 070,0-0

o

N Go
©
Qc3 3 Qc3 on -t
4 &
® © < =
RI7 A7 R7 \ e
e o a AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
At Rgt Aot
. W:29.8% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:68.9% L:31.1%
! o - BN
@ @ w:2.0% D:97.2% L:0.8% W:98.2% D:0.8% L:1.8% W:53.7% L:46.3%
Reet
Azwins [ll AZdraws AZloses [l AZwhite() AZblack @

https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/

59 ~ Fraunhofer

s

https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/

Value Function Approximation

= |n practice we often need to approximate the value function, because:
(Explicit) tabular representations require too much space
We want to generalize information across state (see also: POMDPs!)

= For linear function approximation almost all convergence guarantees hold
For non-linear function approximation such guarantees cannot be given
But careful scheduling and several tricks help to stabilize training

= But:
Non-linear function approximation is very sensitive to hyper-parameter tuning!
See also: https://www.youtube.com/watch?v=Vh4H0gOwdlIg
(not directly related but definitely worth watching!)

And also: https://www.alexirpan.com/2018/02/14/rl-hard.htm|
(but please read with humor)

\

~ Fraunhofer

60
s

https://www.youtube.com/watch?v=Vh4H0gOwdIg
https://www.alexirpan.com/2018/02/14/rl-hard.html

The Deadly Triad

= Stability in RL is a very serious thing!

= |nstability and divergence in RL mainly stem from
Function Approximation.
Bootstrapping.
Off-policy training.

= Unfortunately, in most of the case we really use the full combination.

Google

61

include 1 st neighbor methods and 1 lly weighted 1 ssion, but n

nd artificial neural networks (ANNs)

methods such as tile «

Ezxercise 11.3 (programmin

terexample and show empirically that its weights diverge. a

Apply one-ste adient Q-learning to Baird’s coun-

11.3 The Deadly Triad

Our discussion so far can be summarized by saying that the danger of instability and
divergence arises whenever we combine all of the following three elements, making up
what we call the deadly triad:

Function approximation A powerful, scalable way of generalizing from a state space
much larger than the memory and computational resources (e.g., linear function
approximation or ANNs).

Bootstrapping Update targets that include existing estimates (as in dynamic pro-
gramming or TD methods) rather than relying exclusively on actual rewards and
complete returns (as in MC methods).

Off-policy training Training on a distribution of transitions other than that produced
by the target policy. Sweeping through the state space and updating all states
uniformly, as in dynamic programming, does not respect the target policy and is
an example of off-policy training.

hat the danger is not due to control or to generalized policy iteration.
: complex to analyze, but the instability arises in the simpler prediction
:ludes all three elements of the deadly triad. The danger is also not
to uncertainties about the environment, because it occurs just as

the deadly triad X Q

Q Ale () Bilder [JVideos O Shopping & News i Mehr Einstellungen Suchfilter ; methods, such as dynamiec programming, in which the environment
1.

Ungeféhr 1.860.000 Ergebnisse (0,46 Sekunden) its of the deadly triad are present, but not all three, then instability
s natural, then, to go through the three and see if there is any one

& arxiv.org> cs v Diese Seite iibersetzen D

Deep Reinforcement Learning and the Deadly Triad wction approzimation most clearly cannot be given up. We need

von H van Hasselt - 2018 - Zitiert von: 19 - Ahnliche Artikel to large problems an] t 'i;n"'**-'\' power. We need at least

1 n 18 I 1€ I ot 1Y 1

06.12.2018 - Sutton and Barto (2018) identify a deadly triad of function approximation,
bootstrapping, and off-policy learning. When these three properties ...
Du hast diese Seite 2 Mal aufgerufen. Letzter Besuch: 24.07.19

medium.com > defeating-the-deadly-triad-f5a8e3... v Diese Seite tibersetzen
Defeating the Deadly Triad - David Sanwald - Medium

| thought this might by interesting but as long as medium doesn't provide proper support for
typesetting formulas, | have to point to the original version on github: ...

= Fraunhofer

s

Fuzzy Tiling Activations

- N B
= DQNs need target networks to | [-]
reduce the chance of divergence [] -
" Maln reason : 0.00 0.25 0.50 O.ZOO 0.00 0.25 0.50 0.75 1.00
The Q-Targets are non-stationary and (a) TA, k = 4 (b) FTA, k = 4,7 = 0.1 (c) FTA, k = 4,1 = 0.25
moving over subsequent gradient
descent steps
= |dea: ho :FTA(h1W2)
Introduce a special_ activation function that produces hy = ReLu(zW,) ha
sparse representations! [. :
i.e., updates on a particular Q-value does no affect nearby xW1 hq - ha Wy Ly = hoWs
Q-values that much. = :
. . , RelLu FTA
FTA layers stack k-dimensional sparse encodings £
for each element h W, (hy = xW;)

Figure 2: A visualization of an FTA layer

Pan et al.: Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online. ICLR 2021.

62 ~ Fraunhofer

s

Lesson of today
“Be careful with (non-linear) function approximation”

\

63 ~ Fraunhofer

s

References

64

Going Deeper Into Reinforcement Learning: Understanding Q-Learning and Linear Function Approximation;
https://danieltakeshi.github.io/2016/10/31/going-deeper-into-reinforcement-learning-understanding-g-learning-and-linear-
function-approximation/

Watkins, C. J. C. H. (1989). Learning from delayed rewards(Doctoral dissertation, King's College,

Cambridge): https:/link.springer.com/content/pdf/10.1007/BF00992698.pdf

Lin, L. J. (1993). Reinforcement learning for robots using neural networks (No. CMU-CS-93-103). Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science: http://www.dtic.mil/dtic/tr/fulltext/u2/a261434.pdf

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540),

529: http://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis 15NatureControlDeepRL.pdf

Van Hasselt, H., Guez, A., & Silver, D. (2016, February). Deep Reinforcement Learning with Double Q-Learning. In AAAI (Vol.
2, p. 5): http://www.aaai.org/ocs/index.php/AAAI/AAAIT6/paper/download/12389/11847

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., & De Freitas, N. (2015). Dueling network architectures for
deep reinforcement learning. arXiv preprint arXiv:1511.06581: https://arxiv.org/abs/1511.06581

Hausknecht, M., & Stone, P. (2015). Deep recurrent g-learning for partially observable mdps. CoRR,
abs/1507.06527, 7(1): http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/download/11673/11503

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., & Modayil, J. (2018). Deep Reinforcement Learning and the
Deadly Triad. arXiv preprint arXiv:1812.02648.: https:/arxiv.org/abs/1812.02648

\

~ Fraunhofer

s

https://link.springer.com/content/pdf/10.1007/BF00992698.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a261434.pdf
http://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://arxiv.org/abs/1511.06581
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/download/11673/11503
https://arxiv.org/abs/1812.02648

