
Reinforcement Learning

—

Lecture 6: Policy-based RL 1
Christopher Mutschler

Recap: Value Function Approximation
Tile Coding – what makes more sense?

2

vs.

Recap: Value Function Approximation
Tile Coding – what makes more sense?

3

vs.

Recap: Value Function Approximation
Tile Coding – what makes more sense?

4

vs.

Recap: Value Function Approximation
Tile Coding

Recap: Value Function Approximation
Deep Q-Networks (DQNs)

6

DQN v1.0

𝑠!, 𝑎!, 𝑟!, 𝑠"
𝑠", 𝑎", 𝑟", 𝑠#
𝑠#, 𝑎#, 𝑟#, 𝑠$

…

ENV

𝜋

action (𝑎%)

ℒ

State (𝑠%)
Action (𝑎%)

Reward (𝑟%)

Next State (𝑠%&!)

𝑎! = 𝜖 − argmax" *𝑄(𝑠! , 𝑎; 𝑤#)	

mini-
batch

update 𝑤
*𝑄(𝑠# , 𝑎; 𝑤#) 1

ℒ# = 𝑟# + 𝛾 max$!∈𝒜
*𝑄 𝑠#'(, 𝑎; 𝑤) − *𝑄 𝑠# , 𝑎#; 𝑤#

*

12

evaluation network

target network

Copy every
𝑘 timesteps

*𝑄 𝑠#'(, 𝑎#; 𝑤) 2

𝑠#

𝑠#'(

𝑟# , 𝑎#

𝑤#

𝑤)

WHY?WHY?

ANY ALTERNATIVE?

Vapnik’s rule

“Never solve a more general problem as an intermediate step.”
- Vladimir Vapnik, 1998

§ Remember:

”New goal: find a policy that maximizes the expected return!“

§ If we care about optimal behavior: why not learn a policy directly?

7

Policy-based Reinforcement Learning

8

Demonstration Data

Learn Policy Learn Value
Function

Policy

Im
ita

tio
n

Le
ar

ni
ng

In
ve

rs
e

R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

Experience Data

Learn Model Learn Value
Function

Policy Search /
Planning

Learn Policy
M

od
el

-b
as

ed

R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

Po
lic

y
Se

ar
ch

 /
Po

lic
y

G
ra

di
en

ts

Policy

Va
lu

e-
ba

se
d

R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

Actor Critic

Policy-based Reinforcement Learning

§ Previously we approximated parametric value functions:
𝑣% 𝑠 ≈ 𝑣& 𝑠

𝑞% 𝑠, 𝑎 ≈ 𝑞' 𝑠, 𝑎
§ A policy can be generated from these values

§ e.g., greedy or ϵ-greedy

9

Goal: find 𝒘 that approximates the true 𝑸-function

Action
(𝑎8)

Next State
(𝑠89:)

Reward
(𝑅(𝑠8 , 𝑎8 , 𝑠89:))

Environment

Value Function
(#𝑄(𝑠, 𝑎;𝒘))

Policy
(𝜖-Greedy)

Policy-based Reinforcement Learning

§ Previously we approximated parametric value functions:
𝑣% 𝑠 ≈ 𝑣& 𝑠

𝑞% 𝑠, 𝑎 ≈ 𝑞' 𝑠, 𝑎
§ A policy can be generated from these values
§ In this lesson we will directly parameterize the policy:

𝜋(𝑎 𝑠 = 𝑝 𝑎 𝑠; 𝜃
§ We still focus on model-free reinforcement learning

10

Goal: find 𝜽 that maximizes long term reward

Action
(𝑎8)

Next State
(𝑠89:)

Reward
(𝑅(𝑠8 , 𝑎8 , 𝑠89:))

Environment

Policy
(𝜋 𝑎! 𝑠!; 𝜽))

Policy-based Reinforcement Learning
General Overview

§ Model-based RL:
+ “Easy” to learn a model (supervised learning)
+ Learns all there is to know from the data
- Objective captures irrelevant information
- May focus computations/capacity on irrelevant details
- Computing policy (planning) is non-trivial and can be computationally expensive

§ Value-based RL:
+ Closer to true objective
+ Fairly well-understood: somewhat similar to regression
- Still not the true objective: may still focus capacity on less-important details

§ Policy-based RL:
+ Right objective!
- Ignores other learnable knowledge (potentially not the most efficient use of data)

11

Policy-based Reinforcement Learning

§ Value-based
§ Learn value function
§ Implicit policy

(e.g., ϵ-greedy)

§ Policy-based
§ No value function
§ Learn policy

§ Actor-critic
§ Learn value function
§ Learn policy

12

Value Function Policy

Value-based Actor-
critic Policy-based

Value-based vs. Policy-based RL

Last week

Today

Next week

Policy-based Reinforcement Learning
Advantages of Policy-based RL

§ Advantages:
§ Good convergence properties
§ Easily extended to high-dimensional or continuous state and action spaces
§ Can learn stochastic policies
§ Sometimes policies are simple while values and models are complex

§ e.g., rich domain, but optimal is always to go left

§ Disadvantages:
§ Susceptible to local optima (especially with non-linear FA)
§ Obtained knowledge is specific, does not always generalize well

§ Ignores a lot of information in the data (when used in isolation)

13

Policy-based Reinforcement Learning
Stochastic Policies

§ We have seen deterministic policies like this:
§ State gives 𝑄 𝑠, 𝑎; 𝑤 and we selected 𝜋 𝑎|𝑠 by argmax) 𝑄(𝑠, 𝑎; 𝑤)

§ Instead, stochastic policies do something like this:

𝜋 𝑎|𝑠 = 	ℙ 𝑎|𝑠; 𝜃

14

https://towardsdatascience.com/self-learning-ai-agents-iv-stochastic-policy-gradients-b53f088fce20

(policy is represented as a probability distribution)

Policy-based Reinforcement Learning
Why do we need stochastic policies?

Example #1: Rock-Paper-Scissors

§ Two-player game of rock-paper-scissors
§ Scissors beats paper
§ Rock beats scissors
§ Paper beats rock

§ Consider policies for iterated rock-paper-scissors
§ A deterministic policy (e.g., greedy or even 𝜖-greedy)

is easily exploited
§ A uniform random policy is the optimal policy

(i.e., Nash equilibrium)

15

David Silver, UCL Lecture on Reinforcement Learning. 2015

Policy-based Reinforcement Learning
Why do we need stochastic policies?

Example #2: Aliased Gridworld

§ Consider features of the following form (for all N, E, S, W):

𝜙 𝑠, 𝑎 = 1 0 1 0 0 1 0 0

§ The agent cannot differentiate the grey states
§ Compare deterministic and stochastic policies

16

Example: Aliased Gridworld (1)

I The agent cannot di↵erentiate the grey states

I Consider features of the following form (for all N, E, S, W)

�(s, a) = (

wallsz }| {
1|{z}
N

0|{z}
E

1|{z}
S

0|{z}
W

actionsz }| {
0|{z}
N

1|{z}
E

0|{z}
S

0|{z}
W

)

I Compare deterministic and stochastic policies

walls actions

NN E ES SW W

David Silver, UCL Lecture on Reinforcement Learning. 2015

Policy-based Reinforcement Learning
Why do we need stochastic policies?

Example #2: Aliased Gridworld

§ Value-based RL learns a near-deterministic policy
§ e.g., greedy or 𝜖-greedy

§ Under aliasing, an optimal deterministic policy will either
§ Move W in both grey states (shown by red arrows)
§ Move E in both grey states

§ Either way, it can get stuck and never reach the money
§ Hence, it will traverse the corridor for a long time

17

Example: Aliased Gridworld (1)

I The agent cannot di↵erentiate the grey states

I Consider features of the following form (for all N, E, S, W)

�(s, a) = (

wallsz }| {
1|{z}
N

0|{z}
E

1|{z}
S

0|{z}
W

actionsz }| {
0|{z}
N

1|{z}
E

0|{z}
S

0|{z}
W

)

I Compare deterministic and stochastic policies David Silver, UCL Lecture on Reinforcement Learning. 2015

Policy-based Reinforcement Learning
Why do we need stochastic policies?

Example #2: Aliased Gridworld

§ Instead,
an optimal stochastic policy moves randomly E or W in grey states:

𝜋(wall to N and S, move E = 0.5
𝜋(wall to N and S, move W = 0.5

§ Will reach the goal state in a few steps with high probability
§ Policy-based RL can learn the optimal stochastic policy!

18

Example: Aliased Gridworld (1)

I The agent cannot di↵erentiate the grey states

I Consider features of the following form (for all N, E, S, W)

�(s, a) = (

wallsz }| {
1|{z}
N

0|{z}
E

1|{z}
S

0|{z}
W

actionsz }| {
0|{z}
N

1|{z}
E

0|{z}
S

0|{z}
W

)

I Compare deterministic and stochastic policies David Silver, UCL Lecture on Reinforcement Learning. 2015

Policy-based Reinforcement Learning
Why is it better to learn the policy directly?

Example #3: Cartpole

19

(𝑥! , ̇𝑥! , 𝜗, ̇𝜗!)
𝑎! = 𝜽𝟎 + 𝜽𝟏𝑥! + 𝜽𝟐 ̇𝑥! + 𝜽𝟑𝜗 + 𝜽𝟒�̇�

𝑎!(𝑥! , ̇𝑥! , 𝜗, ̇𝜗!)

Policy-based Reinforcement Learning

§ Learn directly a policy without calculating value functions in between
§ Why?

§ Greedy updates
𝜃*+, = argmax

(
𝐸';{𝑄

' 𝑠, 𝑎 }

20

𝑄' 𝜋 𝑄' 𝜋
Small

Change
Large

Change
Large

Change
Large

Change

Potentially unstable learning
process with large policy “jumps”

Why is it better to learn the policy directly?

Policy-based Reinforcement Learning

§ Learn directly a policy without calculating value functions in between
§ Why?

§ Greedy updates
𝜃*+, = argmax

(
𝐸';{𝑄

' 𝑠, 𝑎 }

§ Smooth updates
𝜃*+, = 𝜃* + 𝛼*∇𝐺(<

21

𝑄' 𝜋 𝑄' 𝜋
Small

Change
Large

Change
Large

Change
Large

Change

Potentially unstable learning
process with large policy “jumps”

Reminder:
G = 𝑟' + 𝛾𝑟! + 𝛾"𝑟" + 𝛾#𝑟# +⋯ = 2

%('

)

𝛾%𝑟%

Stable learning process with
smooth policy improvement

𝑄' 𝜋 𝑄' 𝜋
Small

Change
Small

Change
Small

Change
Small

Change

Why is it better to learn the policy directly?

Policy-based Reinforcement Learning
Why is it better to learn the policy directly?

§ Learn directly a policy without calculating value functions in between
§ How to calculate the gradient term?

𝜃*+, = 𝜃* + 𝛼*∇𝐺(<
§ Simple optimization: Finite Difference Stochastic Approximation (FDSA)
§ Idea: to evaluate the gradient, for each dimension 𝑘 ∈ 1, 𝑛 :

§ Estimate 𝑘-th partial derivative of objective function w.r.t. 𝜃 by perturbation 𝜃 by a small amount 𝜖 in 𝑘-th dimension:

!" #
!#3

≈ " #$%&3 '" #
%

,

where 𝑢4 is a unit vector with 1 in 𝑘-th component, 0 elsewhere; lim
5→7

𝜖 = 0 (𝑗 = number of iterations)

§ In RL literature: “Finite Difference Gradient Estimator”
§ Note: a variation in control literature is called Simultaneous Perturbation Stochastic Approximation (SPSA)

§ Simple, noisy, inefficient – but sometimes effective
à works for arbitrary policies (even if they are not differentiable)!

22

Policy-based Reinforcement Learning
Example: AIBO with FDSA

§ Learn fast walking patterns for RoboCup (speed decides on win/lose)
§ Policy parametrized as an ellipsoid (12 parameters)
§ Adapt parameters by (sampled) FDSA
§ Policy evaluated by field traversal time

23

Kohl et al.: Policy gradient reinforcement learning for fast quadrupedal locomotion. ICRA‘ 2004.

http://www.cs.utexas.edu/users/AustinVilla/?p=research/learned_walk

Policy-based Reinforcement Learning
Example: AIBO with FDSA

§ Learn fast walking patterns for RoboCup (speed decides on win/lose)
§ Policy parametrized as an ellipsoid (12 parameters)
§ Adapt parameters by (sampled) FDSA
§ Policy evaluated by field traversal time

Problems:
§ Requires A LOT of samples/trajectories
§ In stochastic environments, with small 𝜖* it is really hard to distinguish the difference between 𝑅+ and 𝑅8

24

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

§ Builds on the Basic Random Search (BRS) Algorithm:
1. Pick a policy 𝜋(, perturb the parameters 𝜃 by applying +𝑣𝛿 and −𝑣𝛿

(𝑣 < 1 is constant noise and 𝛿 is a random number sampled from a normal distribution)
2. Run the policies and apply actions based on 𝜋 𝜃 + 𝑣𝛿 and 𝜋 𝜃 − 𝑣𝛿 and collect the rewards 𝑟(𝜃 + 𝑣𝛿) and 𝑟 𝜃 − 𝑣𝛿

3. For all 𝛿 compute the average ∆	= ,
9 ⋅ Σ 𝑟 𝜃 + 𝑣𝛿 − 𝑟(𝜃 − 𝑣𝛿 𝛿 and update the parameters 𝜃 using ∆ and a learning

rate α:

§ Augmented Random Search (ARS) adds 3 improvements:
1. Divide by the rewards by their standard deviation 𝜎:
2. Normalize the states
3. Only use the top-𝑘 best rollouts to compute the average

25

𝜃()* = 𝜃(+
𝛼
𝑁6
+,*

-

𝑟 𝜋(,+,) − 𝑟 𝜋(,+,/ 𝛿+

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

26

Sample 𝑁 different
variations for the policy
parameters (𝜹𝒊)

To avoid tuning the learning
rate, scale the update by
the standard deviation (𝝈𝑹)
of the 𝟐𝒃 returns used for
the update

Run 2𝑁 simulations/rollouts
for the positive and negative
directions

In V2 of the algorithm, do
not use the state
observed as input but
normalize states using the
running mean and
variance of all states
observed so far

In Vx-t version of the
algorithm, select only the
best b rollouts for the
parameter update

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

§ State-of-the Art algorithm extending classical random search method
§ Comparable performance to modern Deep RL algorithms
§ Robust to hyper-parameters and minimum tuning required
§ Developed by the Control Engineering Community!

27

Mania et al.: Simple random search of static linear policies is competitive for reinforcement learning. NeurIPS 2018.

see also: https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

§ State-of-the Art algorithm extending classical random search method
§ Comparable performance to modern Deep RL algorithms
§ Robust to hyper-parameters and minimum tuning required
§ Developed by the Control Engineering Community!

28

at the beginning… after 300 iterations:after 100 iterations:

see also: https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd

29

Augmented Random Search for Multi-Objective Bayesian Optimization of Neural Networks
ARS in Practice

MOBOpt-ARS:

ParEGO:

Ground Truth:
Figure 3. Topography of the objective value and the
expected improvement for MOBOpt-ARS and ParEGO
after a total of 40 samples, given an initial prior of 5
samples, marked as red triangles.
The global minimum can be found at 𝜃+ = 15 and 𝜃(= 5.
For MOBOpt-ARS, the rollouts for all competing trained
policies are shown as lines with their starting points
marked by red crosses.

30

Augmented Random Search for Multi-Objective Bayesian Optimization of Neural Networks
ARS in Practice

Figure 2. Hypervolume and feasible Pareto fronts of optimizations performed for two problems (ResNet18,
CIFAR10 and MobileNetV3, DaLiAc) with a search budget of 150 samples and 5 seeds each.

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

Pros:
§ Simple to understand and implement
§ Less parameter tuning and robust to hyper-parameters
§ Embarrassingly easy to parallelize

Cons:
§ They tend to favor “lucky” rollouts
§ In stochastic environments it is not easy to distinguish if good performance is due to parameter variation or environment

noise
§ They do not exploit the sequential structure of the problem
§ They require 10x more samples (approx.) compared to properly tuned Deep RL algorithms

31

Policy-based Reinforcement Learning
But…wait…uh… What are we doing here?

32

Policy-based Reinforcement Learning

§ Assume a state-action sequence in a complete trajectory with 𝑇 steps (with 𝑠; being a terminal state):

𝜏 = 𝑠<, 𝑎<, … , 𝑠;8,, 𝑎;8,, 𝑠;

§ As usual,

§ 𝑅 𝑠=, 𝑎= is the reward received after observing 𝑠= and performing action 𝑎=
§ 𝐺 𝜏 	≔ 	∑=><;8,𝛾=𝑅 𝑠=, 𝑎= is the (discounted) sum of rewards (return)

§ Our goal is to maximize the expected reward:

max
(
𝔼'; 𝐺 𝜏

(where 𝜋* is a parameterized policy, e.g., a neural network)

33

Policy Gradients

Policy-based Reinforcement Learning
Policy Gradients

§ But how do we maximize this?
à Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

∇(𝔼@~';𝐺 𝜏

§ Then we can update our parameters 𝜃 with a learning rate 𝛼 in the direction of the gradient:

𝜃 ← 𝜃 + 𝛼∇(𝔼@~';𝐺 𝜏

34

Policy Gradient
often in literature referred to as ∇0𝐽 𝜋0

Policy-based Reinforcement Learning
Policy Gradients

§ Let 𝐽 𝜃 be any policy objective function
§ Policy gradient algorithms search for a local maximum in 𝐽 𝜃 by ascending the

gradient of the policy w.r.t. the parameters 𝜃:

∆𝜃 = 𝛼∇(𝐽 𝜃

where ∇(𝐽 𝜃 is the policy gradient

∇(𝐽 𝜃 =

𝜕𝐽 𝜃
𝜕𝜃,
⋮

𝜕𝐽 𝜃
𝜕𝜃*

and 𝛼 is a step-size parameter.

35

David Silver. 2016.

Policy-based Reinforcement Learning
Policy Gradients

Let P τ|θ be the probability of a trajectory τ under policy π1, then

𝛻0𝔼2~''𝐺 𝜏 = 𝛻06
2

𝑃 𝜏|𝜃 𝐺 𝜏

𝛻0𝔼2~''𝐺 𝜏 =6
2

𝛻0𝑃 𝜏|𝜃 𝐺 𝜏

𝛻0𝔼2~''𝐺 𝜏 =6
2

𝑃 𝜏|𝜃
𝑃 𝜏|𝜃 	𝛻0𝑃 𝜏|𝜃 𝐺 𝜏

𝛻0𝔼2~''𝐺 𝜏 =6
2

𝑃 𝜏|𝜃 𝛻0 𝑙𝑜𝑔 𝑃 𝜏|𝜃 𝐺 𝜏

𝛻0𝔼2~''𝐺 𝜏 = 𝔼2~'' 𝛻0 𝑙𝑜𝑔 𝑃 𝜏|𝜃 𝐺 𝜏

36

https://www.janisklaise.com/post/rl-policy-gradients/

definition of expectation

swap sum/integral and gradient

multiply and divide by P τ|θ

∇B log f x =
∇Bf(x)
f(x)

definition of expectation

Policy-based Reinforcement Learning
Policy Gradients

§ The probability of a trajectory 𝜏 can be formulated as (note: MDP):

𝑃 𝜏|𝜃 = 𝑝 𝑠4 K
!,4

5/*

𝑝 𝑠!)*|𝑠! , 𝑎! 𝜋0 𝑎!|𝑠!

§ But wait, let‘s take the gradient of the log-prob first:

∇0 log 𝑃 𝜏|𝜃 = 	∇0 log 𝑝 𝑠4 +	6
!,4

5

log 𝑝 𝑠!)*|𝑠! , 𝑎! + log 𝜋0 𝑎!|𝑠!

∇0 log 𝑃 𝜏|𝜃 =6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 	

37

argh…we do not like this!

dynamics model disappears!

Policy-based Reinforcement Learning

§ Plugging grad-log-prob into the gradient update gives:

∇0𝔼2~''𝐺 𝜏 = 𝔼2~'' ∇0 log 𝑃 𝜏|𝜃 𝐺 𝜏

∇0𝔼2~''𝐺 𝜏 = 𝔼2~'' 6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 𝐺(𝜏)

§ But what is the intuition behind this gradient?

§ The gradient tries to
§ Increase probability of paths with positive 𝐺
§ Decrease probability of paths with negative 𝐺

38

Pieter Abbeel. DeepRL Bootcamp 4A Policy Gradients.

Policy Gradients

Policy-based Reinforcement Learning
Policy Gradients

§ Plugging grad-log-prob into the gradient update gives:

∇0𝔼2~''𝐺 𝜏 = 𝔼2~'' ∇0 log 𝑃 𝜏|𝜃 𝐺 𝜏

∇0𝔼2~''𝐺 𝜏 = 𝔼2~'' 6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 𝐺(𝜏)

§ As this is an expectation, we can estimate it with a sample mean using Monte-Carlo sampling of |𝜏| = 𝐿
trajectories:

∇0𝔼2~''𝐺 𝜏 ≈
1
𝐿6

2

6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 𝐺 𝜏

∇0𝔼2~''𝐺 𝜏 ≈
1
𝐿6

2

6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 6
!(,!

5

𝛾!(/!𝑅 𝑠!(, 𝑎!(

39

each action in the episode in influenced
by the reward of the whole episode???
à reward-to-go policy gradient

Policy-based Reinforcement Learning
Policy Gradients

§ Plugging grad-log-prob into the gradient update gives:

∇0𝔼2~''𝐺 𝜏 = 𝔼2~'' ∇0 log 𝑃 𝜏|𝜃 𝐺 𝜏

∇0𝔼2~''𝐺 𝜏 = 𝔼2~'' 6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 𝐺(𝜏)

§ Reduce variance: as this is an expectation, we can estimate it with a sample mean using Monte-Carlo
sampling of 𝐿 trajectories:

∇0𝔼2~''𝐺 𝜏 ≈
1
𝐿6

2

6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 𝐺 𝜏

∇0𝔼2~''𝐺 𝜏 ≈
1
𝐿6

2

6
!,4

5

∇0 log 𝜋0 𝑎!|𝑠! 6
!(,!

5

𝛾!(/!𝑅 𝑠!(, 𝑎!(

40

each action in the episode in influenced
by the reward of the whole episode???
à reward-to-go policy gradient

Policy-based Reinforcement Learning
Policy Gradients

§ How does the reward-to-go help?

41

http://karpathy.github.io/2016/05/31/rl/
Andrej Karpathy. DeepRL Bootcamp 4B

Policy-based Reinforcement Learning
Policy Gradient: REINFORCE

§ Monte-Carle Policy Gradient Control
§ Update parameters by stochastic gradient ascent
§ Using policy gradient theorem
§ Using return-to-go 𝑄'; 𝑠=, 𝑎= as an unbiased sample of 𝐺:

∆𝜃= = 𝛼∇(log 𝜋(𝑎=|𝑠= 𝛾𝐺=

42

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

✓ ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Policy-based Reinforcement Learning
Policy Gradient: REINFORCE

43

13.1. Policy Approximation and its Advantages 323

A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two di↵erent things with specific probabilities, such as when blu�ng in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is �1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to the left and left moves to the right.
The problem is di�cult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1, 0]> and x(s, left) = [0, 1]>,
for all s. An action-value method with "-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 � "/2 on all steps
or choosing left with the same high probability on all time steps. If " = 0.1, then
these two policies achieve a value (at the start state) of less than �44 and �82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about �11.6.

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100
0.3 0.40 0.6 0.7 0.8 0.90.5 1

�-greedy left

�-greedy right

optimal
stochastic

policy

J(✓) = v⇡✓ (S)

GS

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Şimşek, Algórta, and Kothiyal, 2016).

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Policy-based Reinforcement Learning
Policy Gradient: REINFORCE

44

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Policy-based Reinforcement Learning
Policy Gradients

§ Policy Gradient:
§ On-policy algorithm that also works w/ continuous action-spaces

+ Good & easy-to-follow implementations available1

+ Intuitive algorithm
+ Easy to parallelize
- High variance
- Not capable of solving modern continuous action control problems

45

Initialize a policy network randomly.
Repeat forever:

collect a bunch of rollouts with the policy.
Increase the probability of actions that worked well.

???
Profit.

1 https://www.janisklaise.com/post/rl-policy-gradients

Policy-based Reinforcement Learning

§ Deisenroth, M. P., Neumann, G., & Peters, J. (2013). A survey on policy search for robotics. Foundations and Trends® in Robotics, 2(1–2), 1-
142: https://spiral.imperial.ac.uk/bitstream/10044/1/12051/7/fnt_corrected_2014-8-22.pdf

§ Sigaud, O., & Stulp, F. (2019). Policy search in continuous action domains: an overview. Neural Networks. ArXiv:
https://arxiv.org/pdf/1803.04706.pdf

§ Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing systems (pp. 1057-1063). Link: http://papers.nips.cc/paper/1713-policy-gradient-
methods-for-reinforcement-learning-with-function-approximation.pdf

§ Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems (pp. 1531-1538). Link:
http://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf

§ Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016, June). Benchmarking deep reinforcement learning for continuous control.
In International Conference on Machine Learning (pp. 1329-1338): http://proceedings.mlr.press/v48/duan16.pdf

§ Riedmiller, M., Peters, J., & Schaal, S. (2007, April). Evaluation of policy gradient methods and variants on the cart-pole benchmark. In 2007
IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (pp. 254-261). IEEE. link:
http://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/ADPRL2007-Peters2_[0].pdf

§ Kober, J., & Peters, J. R. (2009). Policy search for motor primitives in robotics. In Advances in neural information processing systems (pp. 849-
856). Link: https://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics

§ Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4), 229-
256.

§ Vlassis, N., Toussaint, M., Kontes, G., & Piperidis, S. (2009). Learning model-free robot control by a Monte Carlo EM algorithm. Autonomous
Robots, 27(2), 123-130.

46

References

