Z Fraunhofer

IS

Fraunhofer-Institut flr Integrierte

Schaltungen 1IS

Reinforcement ning

% :
= —
s

Christopher Mutschler

Recap: Value Function Approximation
Tile Coding — what makes more sense?

VS.

\

2 ~ Fraunhofer

s

Recap: Value Function Approximation
Tile Coding — what makes more sense?

VS.

\

3 ~ Fraunhofer

s

Recap: Value Function Approximation
Tile Coding — what makes more sense?

VS.

\

4 ~ Fraunhofer

s

Recap: Value Function Approximation
Tile Coding

Ezxercise 9.4 Suppose we believe that one of two state dimensions is more likely to have
an effect on the value function than is the other, that generalization should be primarily
across this dimension rather than along it. What kind of tilings could be used to take
advantage of this prior knowledge? [

\

~ Fraunhofer

s

Recap: Value Function Approximation
Deep Q-Networks (DQNSs)

State (s;)

Action (a;)

Reward (1;)

Next State (s¢41)

N
N

$1,01,71,S2

\ 4

S2,03,12,S53
S3,03,713, 54

ENV

\update w

\

~

B

evaluation network

-
»
>

L

action (a;)

a, = € — argmax, Q(sy, a; w;)

A A

Q(sivr,a;w) 2

~ ~ 2
L; = [ri + ¥ max Q(sir,a;w™) — Q(sy, a;; Wi)]

T

Q(Si'a; wy) !

\

~ Fraunhofer

s

Vapnik’s rule

“Never solve a more general problem as an intermediate step.”
- Vladimir Vapnik, 1998

= Remember:

“New goal: find a policy that maximizes the expected return!”

= |f we care about optimal behavior: why not learn a policy directly?

\

; ~ Fraunhofer

s

Policy-based Reinforcement Learning

Demonstration Data

N

. Learn Value
Learn Policy Function

Learn Value

[Learn Model] .
Function
v

\ 4
[Policy Search /] Actor Criid

Planning

Model-based
Reinforcement
Learning
Reinforcement
Learning

~ 2
c C
[SRN)
S ©
ORI
O]
>
>
20
O_
(@)
o g

Value-based

Imitation Learning
Inverse
Reinforcement
Learning

\

~ Fraunhofer

s

Policy-based Reinforcement Learning

= Previously we approximated parametric value functions:
U (s) = vr(s)
qw(s,a) = qr(s,a)
= A policy can be generated from these values
e.g., greedy or e-greedy

Neét St)ate f Value Function Policy
t+1 L (Q(S, a;w)) (e-Greedy)

Action

(1 (ar)

l Environment I

Reward
(R(S¢,) Set1))

Goal: find w that approximates the true Q-function

\

o ~ Fraunhofer

s

Policy-based Reinforcement Learning

10

In this lesson we will directly parameterize the policy:

We still focus on model-free reinforcement learning

Next State

mg (als) = p(als; 8)

(Policy

(Se+1)

| (adlss 0)

]7

f

Reward
(R(S¢,) Set1))

L

1.

Action

(ar)

Environment J‘

Goal: find 0 that maximizes long term reward

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
General Overview

= Model-based RL:
+ "Easy” to learn a model (supervised learning) T
+ Learns all there is to know from the data
- Objective captures irrelevant information
- May focus computations/capacity on irrelevant details
- Computing policy (planning) is non-trivial and can be computationally expensive

‘ Learn Model ‘

= Value-based RL:
+ Closer to true objective
+ Fairly well-understood: somewhat similar to regression
- Still not the true objective: may still focus capacity on less-important details

= Policy-based RL:
+ Right objective!
- Ignores other learnable knowledge (potentially not the most efficient use of data)

11

Experience Data

[Learn Value ‘

‘ Learn Policy ‘ |___ Function

\i Actor Critic | | Poliey |

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Value-based vs. Policy-based RL

= Value-based
Learn value function
Implicit policy
(e.g., e-greedy)

= Policy-based
No value function
Learn policy

= Actor-critic

Learn value function
Learn policy

12

Value Functio

Value-based

Policy

Policy-based

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Advantages of Policy-based RL

= Advantages:
Good convergence properties
Easily extended to high-dimensional or continuous state and action spaces
Can learn stochastic policies
Sometimes policies are simple while values and models are complex
e.g., rich domain, but optimal is always to go left

= Disadvantages:
Susceptible to local optima (especially with non-linear FA)
Obtained knowledge is specific, does not always generalize well
Ignores a lot of information in the data (when used in isolation)

13

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Stochastic Policies

= We have seen deterministic policies like this:
State gives Q(s, a; w) and we selected m(a|s) by argmax, Q(s, a; w)

l Reward |
Agent '
State Take Environment
action

parameter 6

Observe state

= Instead, stochastic policies do something like this:

n(a|s) = Plals; 6]

(policy is represented as a probability distribution)
m(als)

(') 1 1 N 9
https.//towardsdatascience.com/self-learning-ai-agents-iv-stochastic-policy-gradients-b53f088fce 20

~ Fraunhofer

s

\

14

Policy-based Reinforcement Learning
Why do we need stochastic policies?

Example #1: Rock-Paper-Scissors

= Two-player game of rock-paper-scissors
Scissors beats paper
Rock beats scissors
Paper beats rock

= Consider policies for iterated rock-paper-scissors

A deterministic policy (e.g., greedy or even e-greedy)
is easily exploited

A uniform random policy is the optimal policy
(i.e., Nash equilibrium)

David Silver, UCL Lecture on Reinforcement Learning. 2015

\

5 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Why do we need stochastic policies?

5

= Consider features of the following form (for all N, E, S, W):

walls actions

l_l_|l_l_|
¢(G,a)=1 0 1 0 0 1 0 O

= The agent cannot differentiate the grey states
= Compare deterministic and stochastic policies

16

David Silver, UCL Lecture on Reinforcement Learning. 2015

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Why do we need stochastic policies?

= Value-based RL learns a near-deterministic policy
e.g., greedy or e-greedy

= Under aliasing, an optimal deterministic policy will either
Move W in both grey states (shown by red arrows)
Move E in both grey states

= Either way, it can get stuck and never reach the money

= Hence, it will traverse the corridor for a long time

17

David Silver, UCL Lecture on Reinforcement Learning. 2015

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Why do we need stochastic policies?

>
= |nstead,

an optimal stochastic policy moves randomly E or W in grey states:

mg(wall to N and S, move E) = 0.5
mg(wall to N and S, move W) = 0.5

= Will reach the goal state in a few steps with high probability
= Policy-based RL can learn the optimal stochastic policy!

David Silver, UCL Lecture on Reinforcement Learning. 2015

\

~ Fraunhofer

18
s

Policy-based Reinforcement Learning
Why is it better to learn the policy directly?

Example #3: Cartpole

\
®

Q
)

ST
2 tput layer

hidden layer 1 hidden layer 2

(‘{‘

».\')
X0
L

input layer

\

10 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Why is it better to learn the policy directly?

= Learn directly a policy without calculating value functions in between
= Why?

Greedy updates
On+1 = arggnax Eng{Qn(S: a)}

Large Large Large

Change Change Change

20

The Phenomenon of Policy Churn

Tom Schaul André Barreto John Quan Georg Ostrovski
DeepMind DeepMind DeepMind DeepMind
London, UK London, UK London, UK London, UK

{tom,andrebarreto, johnquan, ostrovski}@deepmind.com

Abstract

We identify and study the phenomenon of policy churn, that is, the rapid change of
the greedy policy in value-based reinf learning. Policy churn operates at
a surprisingly rapid pace, changing the greedy action in a large fraction of states
within a handful of learning updates (in a typical deep RL set-up such as DQN
on Atari). We characterise the phenomenon empirically, verifying that it is not
limited to specific algorithm or environment properties. A number of ablations
help whittle down the plausible explanations on why churn occurs, the most likely
one being deep learning with high-variance updates. Finally, we hypothesise that
policy churn is a potentially beneficial but overlooked form of implicit exploration,
which casts e-greedy exploration in a fresh light, namely that e-noise plays a much
smaller role than expected.

1 The Phenomenon

Reinforcement learning (RL) involves agents that incr Ily update their policy. This process is
driven by the objective of maximising reward, and based on experience that the agent generates via
exploration. The sequence of policies 7, ..., Tk, ..., 7 usually starts from a randomly initialised
policy m, and aims to end at a near-optimal policy 7 ~ =*. Ideally, steps in that sequence
(7). — ™) are policy improvements that increase expected reward.

This paper studies the amount of policy change that goes along with such a policy update process
(for a definition, see Section 1.1). In particular, it makes the core observation that policy change in
practice (as illustrated in some typical deep RL settings) is orders of magnitude larger than could
have been expected, and stands in contrast to various reference algorithms (Sections 1.2 and 3.3).

Key observation 1: The greedy policy changes much more rapidly than you probably think.?

“As a coarse magnitude for the impatient reader: in a typical run of DQN on Atari, the greedy
policy changes in & 10% of all states after a single gradient update (Figure 1 and Section 1.2).

We dub this phenomenon “policy churn™ to highlight that most of this policy change may be
unnecessary. We study the phenomenon in depth, determining the range of deep RL scenarios it
appears in, fleshing out its properties, and in the process narrowing the space of potential causes and
mechanisms involved using a set of ablations (Section 3).

Our second key message relates the ph of churn to ex ion, specifically in the context
of e-greedy exploration (Section 2), with some more speculative ramifications in Section 4.

Key observation 2: Policy churn is a signifi driver of exploration.”

“This holds both in the sense that reducing churn can reduce performance, and in the sense that
explicitly adding noise becomes unnecessary in the presence of churn (i.e., € = 0 is viable).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

\

~ Fraunhofer

Policy-based Reinforcement Learning
Why is it better to learn the policy directly?

= Learn directly a policy without calculating value functions in between
= Why?

Greedy updates
On+1 = argznax EnQ{Qn(S: a)}

Large Large Large

Change Change Change

Smooth updates

9n+1 == HTL + anVng

@=@=@=)

21

Potentially unstable learning
process with large policy “jumps”

Reminder:

[00)
G=ryg+yr +y°r, +y3rs+ - = Zytrt
t=0

Stable learning process with
smooth policy improvement

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Why is it better to learn the policy directly?

= Learn directly a policy without calculating value functions in between
= How to calculate the gradient term?

0n+1 == 97’1, ‘l' anVng

Simple optimization:
Idea: to evaluate the gradient, for each dimension k € [1,n]:
Estimate k-th partial derivative of objective function w.r.t. 8 by perturbation 6 by a small amount € in k-th dimension:

0J(9) _ J(O+ew)=J(8)
a@k € ’

where uy is a unit vector with 1 in k-th component, 0 elsewhere; lim € = 0 (j = number of iterations)

J—00

In RL literature: “Finite Difference Gradient Estimator”
Note: a variation in control literature is called Simultaneous Perturbation Stochastic Approximation (SPSA)

= Simple, noisy, inefficient — but sometimes effective
- works for arbitrary policies (even if they are not differentiable)!

\

2 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Example: AIBO with FDSA

= Learn fast walking patterns for RoboCup (speed decides on win/lose)
= Policy parametrized as an ellipsoid (12 parameters)

= Adapt parameters by (sampled) FDSA

= Policy evaluated by field traversal time

™ mo — TN Score
01 — €1 e 207
01—¢€ | ... | 214 = Average: 210
0:14+0 | ... | 225
+0 0,+0 | ... | 220 = Average: 220
http://www.cs.utexas.edu/users/AustinVilla/?p=research/learned_walk
01 + €1 s 239
+€1 0,4+¢€ | ... | 244 = Average: 240

Kohl et al.: Policy gradient reinforcement learning for fast quadrupedal locomotion. ICRA* 2004.

23 = Fraunhofer

s

Policy-based Reinforcement Learning
Example: AIBO with FDSA

= Learn fast walking patterns for RoboCup (speed decides on win/lose)
= Policy parametrized as an ellipsoid (12 parameters)

= Adapt parameters by (sampled) FDSA

= Policy evaluated by field traversal time

Problems:
= Requires A LOT of samples/trajectories
= |n stochastic environments, with small €, it is really hard to distinguish the difference between R™ and R~

\

”s ~ Fraunhofer

s

Policy-based Reinforcement Learning

Better: Augmented Random Search (ARS)

= Builds on the Basic Random Search (BRS) Algorithm:

Pick a policy mg, perturb the parameters 8 by applying +vé and —vé
(v < 1 is constant noise and & is a random number sampled from a normal distribution)

Run the policies and apply actions based on (8 + vé) and m(6 — vd) and collect the rewards (8 + vé) and r(8 — v6)

For all § compute the average A = % - 2[r(@ + v6) —r(6 — vd]6 and update the parameters 6 using A and a learning

rate o

N
a
01 = 0+ > [r(myse) = ()60
k=1

= Augmented Random Search (ARS) adds 3 improvements:

Divide by the rewards by their standard deviation o,
Normalize the states

Only use the top-k best rollouts to compute the average

25

Algorithm 1 Basic Random Search (BRS)

1: Hyperparameters: step-size «, number of directions sampled per iteration IV, standard devi-

i >

ation of the exploration noise v

. Initialize: 6y = 0, and j = 0.
: while ending condition not satisfied do

Sample 8;,4s,...,dn5 of the same size as ;, with i.i.d. standard normal entries.
Collect 2N rollouts of horizon H and their corresponding rewards using the policies

ﬂ'j,k’+((1,‘) = T0;4vdy (17) and ﬂ'j,k,_(il,‘) = T0; by, (x)!

with k € {1,2,..., N}.
Make the update step:

N

Oi1=0;+ & > lr(mjn,+) = r(mjn,—)] 6.
k=1

jei+ 1

: end while

= Fraunhofer

s

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

|
Algorithm 1 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t
1: Hyperparameters: step-size v, number of directions sampled per iteration IV, standard deviation
of the exploration noise , number of top-performing directions to use b (b < N is allowed only
for V1-t and V2-t)
2: lnifialize:' My = 0 E Rp>n /l',() = 0cR" and ¥y =1, € R"’x".j = 0. Samp|e N different
A 1Lt naLs w’m e - variations for the policy
4: Sample 6y,09,...,0n5 inR with 1.i.d. standard normal entries. parameters (5;)
1I?urt1hZN sir.r;.ulatiorljs/rollogts Vi: {ﬂj,k,+(a) = (M; + viy)a
or the positive and negative “ e (@) = (M —vip)x
directions '
V2 {ﬂj,k,Jr(a:) = (M + viy) diag (Ej)—l//z (x = p)
,) = (M. — vd) di N2 — s)
mik—(2) = (Mj — voy) ding(%,)™ " (x —) In Vx-t version of the
i algorithm, select only the
b - best b rollouts for the
6: VI, V2-t: Sort the directions & by max{r(m; x4),7(mj)}, denote by) the k-t parameter update
) lar%:st direction, and by m; () 4 and 7; () _ the corresponding policies. |
7 Make the update step: i
To avoid tuning the learning P P In V2 of the algorithm, do
rate, scale the update by K] not use the state
the standard deviation (o) Mjsr = Mj+ 5o [r(m5,09,4) = v(m5,0),-)] k. observed as input but
of the 2b returns used for o=1 normalize states using the
the update ere-sinmties P~ stes running mean and
o V2: Setjtj41, ¥4 to be the mean and covariance of the 2N H (j + 1) states encountere(Va1ance of all states
from the start of training [observed so far
9 g+ 1 .
10: end while
-—
2 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

27

State-of-the Art algorithm extending classical random search method
= Comparable performance to modern Deep RL algorithms

o _ _ Average reward evaluated over 100 random seeds, shown by percentile

= Robust to hyper-parameters and minimum tuning required N it o
. . . 4000 A

= Developed by the Control Engineering Community! Al .

300 3000

- 5000
<4 ,»\,»\L,\r\,\ﬁw\
«©
5. wJ\"\N‘w 4000
a 200 2000 / .
% 2 3000
g 100 , 2000
< / 1000
— 1000 ¥
0 0-10 ©10-20 W20 - 100 o 0-20 20-30 W30-100 0 0-5M05-20 H20-100
0 500 1000 1500 0 5000 10000 0 5000 10000
o0 Walker2d-v1 Ant-vl Humanoid-v1
0-80 ©80-90 90 - 100 4000 - o 2000
- 8000 :
= . Al
s 3000 P 6000
& 6000
S 2000
& 4000 4000
5 . 1000
< 2000 0 2000 -
> ----- =]
SO 0-30 M30-70 W70 - 10(M 10-30 B30-70 W70- 100
0 —1000 0
0 25000 50000 0 25000 50000 75000 0 100000 200000 300000 400000
Episodes Episodes Episodes

Mania et al.: Simple random search of static linear policies is competitive for reinforcement learning. NeurlPS 2018.

see also: https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd

\

Z Fraunhofer

s

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

= State-of-the Art algorithm extending classical random search method
= Comparable performance to modern Deep RL algorithms

= Robust to hyper-parameters and minimum tuning required

= Developed by the Control Engineering Community!

at the beginning... after 100 iterations:

28

after 300 iterations:

e

4

see also: https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd

\

~ Fraunhofer

s

ARS in Practice
Augmented Random Search for Multi-Objective Bayesian Optimization of Neural Networks

MOBOpt-ARS:

Multi-Objective Optimization Objective Function

q Evaluator

Suggest new set o

(N\
| Hyperparameters | DNN Training and
Start using Augmented Filter Pruning
Random Search FLOPs of N g
trained model ! . _ 5 6e.02
~ : 30+ o .
o Post Training 0.6 s s 4.8e-02
STEF—) termln.a.tlon Accuracy of Static Quantization 00 & . e . = 4.0e02 £
condition . S 201 ae . 2
quantized model -06w o & - - 3.2e-02 5
p Y - _1,2:4:1_1 £ 15 ° . . 2.4e-02 %
[Collect objectives < Automatic pode _1.8° 092, T . . 1.6e-02 ‘%;;
from evaluation JMemory Consumptior Generation o s| . e 60e03 2
on target system ol Lo
ROM, RAM) DNN Artifact -0 5 10 % S0 0-0e+00
(? lfacts theta O
\ 4
a8 Figure 3. Topography of the objective value and the
expected improvement for MOBOpt-ARS and ParEGO
3.6 . L .
Y after a total of 40 samples, given an initial prior of 5
24 35 samples, marked as red triangles.
1.2 Z The global minimum can be found at 6, = 15 and 6, = 5.
0.0 ‘g For MOBOpt-ARS, the rollouts for all competing trained
-1.238 —policies are shown as lines with their starting points
2.4 marked by red crosses.
29 36 “ Fraunhofer

theta O

s

ARS in Practice

Augmented Random Search for Multi-Objective Bayesian Optimization of Neural Networks

|
L) .. ® 3 . !o %0 %0, 00 '2' ’.o "
= 0.5 1 80 ...:?‘gg .:-&- . ° | :.,ﬁ:-l ;.l..! 3 | ?}:!.Q 5 - .
g —_ *oxx: o ‘P;‘x.
3 0.4 I—f,,_r— X x“ * : 2 x
= < 601 . . . !l . '« ARS-MOBOpt n=44
0 0.3 ARS-MOBOpt ® : TurBO-1 n=25
£ TurBO_1 3 40 ¢ MorBO-1 n=5
g gParEGO 20 NSGA-ll n=7
01 NSGA-II ' ,) Random n = 10
0.01 Random 0 200 400 600 800 20 025 050 0.75 1.00
100 125 150 ROM [KB]

FLOPs 1e9

Figure 2. Hypervolume and feasible Pareto fronts of optimizations performed for two problems (ResNet18,
CIFAR10 and MobileNetV3, DaLiAc) with a search budget of 150 samples and 5 seeds each.

= Fraunhofer

s

Policy-based Reinforcement Learning
Better: Augmented Random Search (ARS)

Pros:

= Simple to understand and implement

= Less parameter tuning and robust to hyper-parameters
= Embarrassingly easy to parallelize

Cons:
= They tend to favor “lucky” rollouts

= |n stochastic environments it is not easy to distinguish if good performance is due to parameter variation or environment
noise

= They do not exploit the sequential structure of the problem
= They require 10x more samples (approx.) compared to properly tuned Deep RL algorithms

\

31 ~ Fraunhofer

s

Policy-based Reinforcement Learning
But...wait...uh... What are we doing here?

- _
‘ 1 B = \'ifleell
Random S’ - & poiliorcement
Search bl o ’{eanin
) Z Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= Assume a state-action sequence in a complete trajectory with T steps (with sy being a terminal state):
T = (So,Ag, --» ST—1,A7-1, ST)

= As usual,
R(st, a¢) is the reward received after observing s; and performing action a;
G(1) = YT=3v*R(ss ap) is the (discounted) sum of rewards (return)

= Our goal is to maximize the expected reward:

max Er, G(T)

(Where 1q is a parameterized policy, e.g., a neural network)

\

33 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= But how do we maximize this?
- Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

Vo]Er~n9 G(1)

= Then we can update our parameters 8 with a learning rate a in the direction of the gradient:

0«0+ aVgE, ,G(7)

Policy Gradient
often in literature referred to as Vg (rg)

\

a4 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= Let J(0) be any policy objective function

= Policy gradient algorithms search for a local maximum in J(8) by ascending the
gradient of the policy w.r.t. the parameters 9:

AB = CZVQJ(H)
where VyJ(0) is the policy gradient
0J(6)
00,
Vol(0) =]
aJ(6)
00,
and a is a step-size parameter.

David Silver. 2016.

\

~ Fraunhofer

s

35

Policy-based Reinforcement Learning
Policy Gradients

Let P(t]|0) be the probability of a trajectory T under policy mg, then

Vo Ee -y G (1) = Vg) P(z]0)G(r)

- Z V,P(z|0)G (1)

< P(l0)
B - P(t|60)

_ z P(z|8)V, log P(z|6)G (7)

VoP(1|60)G(7)

= IET~7T9(VQ log P(7|6)G (7))

36

definition of expectation

swap sum/integral and gradient

multiply and divide by P(t|0)

V. f(x)
f(x)

definition of expectation

Vi logf(x) =

https://www janisklaise.com/post/rl-policy-gradients/

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= The probability of a trajectory T can be formulated as (note: MDP):

T—1
P(7]6) = p(so) Hp(5t+1|5tr a.)mg(ac|se)
t=0

N

argh...we do not like this!

= But wait, let’s take the gradient of the log-prob first:

T
Vg log P(z|6) = Vy (108 p(so) + Z(lOgP(SHﬂSt; a;) + logmg (atlst))>
t=0

T
= Vg logmg(a,|se)
t=0

dynamics model disappears!

\

57 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= Plugging grad-log-prob into the gradient update gives:

Vg]ET"'TCQG(T) = Kz ng (Vg log P(7|0)G (7))

T
—]ET~7T9 (Z Vg logmg (atlst)G(T)>
t=0

= But what is the intuition behind this gradient?

= The gradient tries to
Increase probability of paths with positive G
Decrease probability of paths with negative G

38

s

Policy-based Reinforcement Learning
Policy Gradients

= Plugging grad-log-prob into the gradient update gives:

VoE; r,G (7) = Eirg (Vg log P(7|0)G (7))

T
=]ET~7T9 (Z Vg logmg (atlst)G(T)>
t=0

= As this is an expectation, we can estimate it with a sample mean using Monte-Carlo sampling of |t| = L

trajectories: each action in the episode in influenced
by the reward of the whole episode???

- reward-to-go policy gradient
/

T

1

VoEr r,G(7) = ZZ z Vg logmg (at|s)G(7)
t=0

T

\

30 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= Plugging grad-log-prob into the gradient update gives:

VoE; r,G (7) = Eirg (Vg log P(7|0)G (7))

T
=]ET~7T9 (Z Vg logmg (atlst)G(T)>
t=0

= Reduce variance: as this is an expectation, we can estimate it with a sample mean using Monte-Carlo

sampling of L trajectories: each action in the episode in influenced

by the reward of the whole episode???

- reward-to-go policy gradient
/

VoBroryG(D) ~ T z Z Vo log T (arls) 6 ()

LZ z Vg logmg (a¢|s:) Z YE TtR(syr, apr)

t'=t

\

40 ~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= How does the reward-to-go help?

DOWN DOWN UP

-0 g0, "0 .@ WIN
ro— >0 @ LOSE
>‘DOWN’. DOWN>‘ UP ~® LOSE
00— @ WIN

http.://karpathy.github.io/2016/05/31/rl/
Andrej Karpathy. DeepRL Bootcamp 4B

\

“ ~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradient: REINFORCE

= Monte-Carle Policy Gradient Control
Update parameters by stochastic gradient ascent
Using policy gradient theorem
Using return-to-go Q™¢ (s, a;) as an unbiased sample of G:
A8, = aVglogmg(at|se) yG;

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization m(als, 6)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7—1, Ar_1, Ry, following = (-|-,0)
Loop for each step of the episode t =0,1,...,T — 1:
G+ ZZ:t—i-l /Yk_t_le (Gt>
0 < 0+ ay'GVInrw(ASe, 0)

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

42 ~ Fraunhofer

s

Policy-based Reinforcement Learning

Policy Gradient: REINFORCE

43

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is —1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second

The problem is difficult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1,0] T and x(s, left) = [0,1] T,
for all s. An action-value method with e-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 — £/2 on all steps
or choosing left with the same high probability on all time steps. If ¢ = 0.1, then
these two policies achieve a value (at the start state) of less than —44 and —82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about —11.6.

-11.6 -

20l optimal
stochastic

policy

40+
£-greedy right
J(0) = v, (S)

_60 -

=4 G
801§ e-greedy left

_100 -l 1 1 1 1 1

0 0.1 0.2 0j3 Oj4 0j5 0?6 Oj7 08 0.9 1
probability of right action

state they are reversed, so that right moves to the left and left moves to the right.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

\

~ Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradient: REINFORCE

1
-
o
1
*
~~
Ve
=
~—

S
i e M ‘]r)‘ :"v

W 1\! ‘V A
m{ ~~' MY

N
o
|
Q
|
8
& =
?.5?
: _-i

Go

Total reward

on episode
averaged over 100 runs

L | L | J
1 200 400 600 800 1000
Episode

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

44

~Z Fraunhofer

s

Policy-based Reinforcement Learning
Policy Gradients

= Policy Gradient:
On-policy algorithm that also works w/ continuous action-spaces

Initialize a policy network randomly.
Repeat forever:
collect a bunch of rollouts with the policy.
Increase the probability of actions that worked well.
727
Profit.

+ Good & easy-to-follow implementations available®
+ Intuitive algorithm
-+ Easy to parallelize

High variance
- Not capable of solving modern continuous action control problems

! https.//www.janisklaise.com/post/rl-policy-gradients

45 ~ Fraunhofer

s

Policy-based Reinforcement Learning
References

46

Deisenroth, M. P, Neumann, G., & Peters, J. (2013). A survey on policy search for robotics. Foundations and Trends® in Robotics, 2(1-2), 1-
142: https://spiral.imperial.ac.uk/bitstream/10044/1/12051/7/fnt_corrected_2014-8-22 .pdf

Sigaud, O., & Stulp, F. (2019). Policy search in continuous action domains: an overview. Neural Networks. ArXiv:
https://arxiv.org/pdf/1803.04706.pdf

Sutton, R. S., McAllester, D. A., Singh, S. P, & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing systems (pp. 1057-1063). Link: http:/papers.nips.cc/paper/1713-policy-gradient-
methods-for-reinforcement-learning-with-function-approximation.pdf

Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information processing systems (pp. 1531-1538). Link:
http://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016, June). Benchmarking deep reinforcement learning for continuous control.
In International Conference on Machine Learning (pp. 1329-1338): http:/proceedings.mlr.press/v48/duan16.pdf

Riedmiller, M., Peters, J., & Schaal, S. (2007, April). Evaluation of policy gradient methods and variants on the cart-pole benchmark. In 2007
IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (pp. 254-261). IEEE. link:
http://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/ADPRL2007-Peters2_[0].pdf

Kober, J., & Peters, J. R. (2009). Policy search for motor primitives in robotics. In Advances in neural information processing systems (pp. 849-
856). Link: https://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4), 229-
256.

Vlassis, N., Toussaint, M., Kontes, G., & Piperidis, S. (2009). Learning model-free robot control by a Monte Carlo EM algorithm. Autonomous
Robots, 27(2), 123-130.

= Fraunhofer

s

