

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Lecture 8: Exploration-Exploitation

Christopher Mutschler

Exploration-Exploitation: Motivation & Multi-Armed Bandits Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL:
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

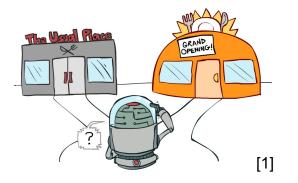
Exploration-Exploitation: Motivation & Multi-Armed Bandits Agenda

Motivation, Problem Definition & Multi-Armed Bandits

- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL:
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Exploration-Exploitation: Motivation & Multi-Armed Bandits

Problem Motivation: Exploration in Life



Restaurant Selection

Oil Drilling

Online Ad Placement

exploit:

go to your favorite restaurant explore: VS. try something new drill at the best-known location VS. drill at a new location show most successful ads VS. show a different random ad

[1] Berkeley Al course

[2] https://medium.com/deep-math-machine-learning-ai/ch-12-1-model-free-reinforcement-learning-algorithms-monte-carlo-sarsa-q-learning-65267cb8d1b4

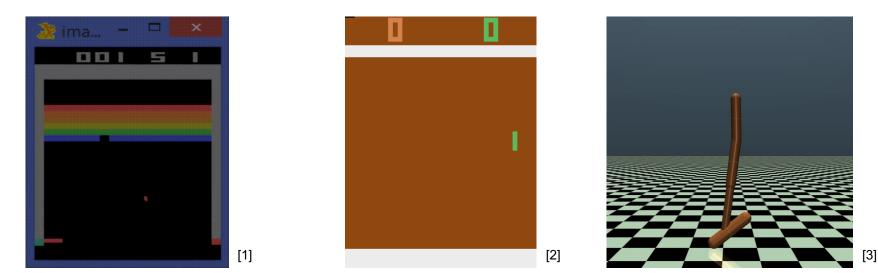
[3] https://designrshub.com/2012/05/3-smart-advertising-tips-for-an-effective-ad-placement.html

Taken from David Silver's Lecture on XX.

Exploration-Exploitation: Motivation & Multi-Armed Bandits

Problem Motivation: RL so far

- Improving the policy with $\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^{\pi}(s, a)$ poses problems for bootstrapping the Q-function
- We used ε-greedy policy improvement
 → occasionally try something "suboptimal" (at least we think it is)



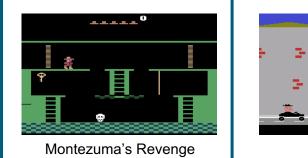
[1] https://www.youtube.com/watch?v=V1eYniJ0Rnk

[2] https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756

[3] https://ljvmiranda921.github.io/projects/2018/09/14/pfn-internship/

Exploration-Exploitation: Motivation & Multi-Armed Bandits Problem Motivation: RL so far

- Oops, I forgot to tell you:
 - ε -greedy exploration does not work well on many tasks and even fails for some of them!
- Some of the Atari 2600 series games known for their hard exploration:

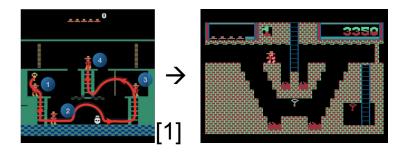


Private Eye

Pitfall!

Why are they so much different?

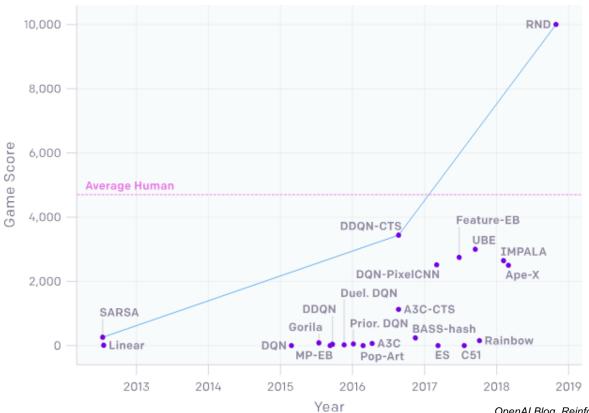
- Getting key = opening door \rightarrow reward
- Getting killed by skull \rightarrow nothing
- Finishing the game only weakly correlates with reward structure of the game!



[1] Aytar et al.: Playing Hard Exploration Games by Watching Youtube. NeurIPS 2018.

Exploration-Exploitation: Motivation & Multi-Armed Bandits Problem Motivation

• But: there is a solution to this – spoiler!



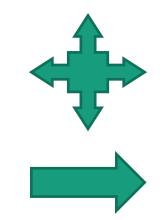
Progress in Montezuma's Revenge

OpenAl Blog. Reinforcement Learning with Prediction-Based Rewards. October 31, 2018.

Exploration-Exploitation: Motivation & Multi-Armed Bandits

Problem Definition

- There are two potential definitions of the exploration problem:
 - 1. How can an agent **discover** high-reward strategies that require a temporally extended sequence of complex behaviors that, individually, are not rewarding?
 - 2. How can an agent **decide** whether to attempt new behaviors (to discover ones with higher reward) or continue to do the best thing it knows so far?
- Both definitions stem from the same problem:
 - Exploration: do things you haven't done before (in the hopes of getting even higher reward)
 → increase knowledge
 - Exploitation: do what you know to yield highest reward
 maximize performance based on knowledge



See also Sergey Levine's Lecture CS285: Exploration

Exploration-Exploitation: Motivation & Multi-Armed Bandits Problem Definition

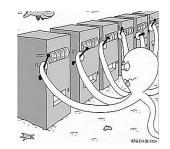
- The dilemma comes from *incomplete* information:
 - we need to gather enough information to make best overall decisions,
 - ... while keeping the risk under control!
- With exploitation we take advantage of the best option we know
- With exploration we take risks to learn about unknown options.
- The best long-term strategy may involve short-term sacrifices
- Ok, we got it. Exploration can be very hard...

- But: how can we derive an **optimal** exploration strategy?
 - Mathematically: what does optimal even mean?
 - In online learning we use the term "regret" to express this (we will come to this later)

Multi-armed bandits (1-step stateless RL problems)	Contextual bandits (1-step RL problems)	Small, finite MDPs (e.g., tractable planning, model-based RL)	Large, infinite MDPs (e.g., continuous spaces)
theoretically tractable			theoretically intractable
			(illustration adapted from Sergev Levine's CS285 class from UC I

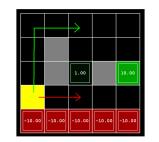
Exploration-Exploitation: Motivation & Multi-Armed Bandits Problem Definition

How can an exploration problem be made tractable?



Multi-armed bandits Contextual bandits

- Exploration problem can be formalized as POMDP identification
- Then policy learning is then easy (even with POMDP)



Small & finite MDPs

- We can frame the exploration problem as a Bayesian model identification
- Then reason about value
 of information

Large & infinite MDPs

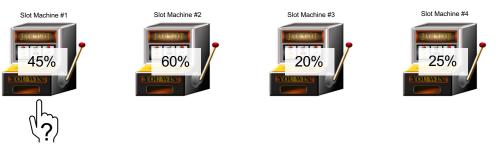
- Optimal methods do not work here
- We need to take them as inspiration, or we use hacks

See also Sergey Levine's Lecture CS285: Exploration.

Exploration-Exploitation: Motivation & Multi-Armed Bandits

Multi-Armed Bandits

- The multi-armed-bandit problem is a classic problem used to study the exploration vs. exploitation dilemma
- Imagine you are in a casino with multiple slot machines, each configured with an unknown reward probability:



https://www.gameroomshow.com

• Under the assumption of an infinite number of trials:

\rightarrow What is the best strategy to achieve highest long-term rewards?

Naive Solution:

- 1. Play each machine for many many many rounds
- 2. Estimate *true* reward probability of each machine (law of large numbers)
- 3. Act greedily with respect to the uncovered probabilities

Exploration-Exploitation: Motivation & Multi-Armed Bandits

Multi-Armed Bandits

A Bernoulli multi-armed bandit can be described as a tuple of $\langle \mathcal{A}, \mathcal{R} \rangle$, where:

- We have N machines and their associated reward probabilities $\{\theta_1, \dots, \theta_n\}$
- At each time step t we take an action a_t on a single slot machine and receive a reward r_t
- \mathcal{A} is a set of actions (i.e., arms): $\mathcal{A} = {pull_1, pull_2, ..., pull_n}$
 - Each action refers to the interaction with one slot machine \rightarrow the true value of the action *a* is the expected reward $Q(a) = \mathbb{E}[r|a] = \theta$
 - If action a_t at the time step t is on the *i*-th machine, then $Q(a_t) = \theta_i$ (note: value function is unknown!)
- \mathcal{R} is a reward function:
 - We observe a reward r in a stochastic fashion. At the time step t, $r_t = \mathcal{R}(a_t) = p(r|a)$ → returns reward 1 with a probability of $\theta_i = Q(a_t)$, or 0 otherwise (i.e., with probability $1 - \theta_i$).
 - The distribution p(r|a) is fixed, but unknown
- Goal: maximize cumulative reward $\sum_{t=1}^{T} r_t$
- As usual, p(r|a) is unknown but we still want to estimate Q(a)
- \rightarrow This is a simplified MDP (as there are no states)

POMDP interpretation:

this is the state, but we don't know it

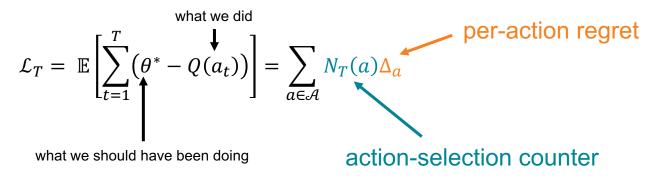
- solving this yields the optimal exploration
- we could maintain a belief over the state (prob-distr. over the states → huge)

Exploration-Exploitation: Motivation & Multi-Armed Bandits Regret

- Our goal is to maximize the cumulative reward $\sum_{t=1}^{T} r_t$
- The optimal reward probability θ^* of the optimal action a^* is

$$\theta^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a) = \max_{1 \le i \le N} \theta_i = \max_{a \in \mathcal{A}} \mathbb{E}[r_t | a_t = a]$$

- But how can we reason about the exploration-exploitation trade-off?
 → Regret as a one-step opportunity loss
- Our loss function is the total regret we might have by not select the optimal action up to the time step T:



Exploration-Exploitation: Motivation & Multi-Armed Bandits Regret

- If we knew the optimal action with the best reward, then:
 - Maximize cumulative rewards \equiv minimize total regret
 - The agent cannot observe or sample the real regret directly
 - But we can use it to analyze different exploration strategies!
- Note:
 - The sum for the total regret extends beyond (single step) episodes
 - The view extends over "lifetime of learning", rather than over "current episode"
 - A good algorithm ensures small visitation counts for large action regrets (but action regrets are unknown...)
- From here, we can derive 3 different **bandit strategies**:
 - 1. No exploration: very naïve approach and a bad one usually
 - 2. Exploration at random
 - 3. Smart exploration with preference to explore actions with high uncertainty

Exploration-Exploitation

Agenda

- Motivation, Problem Definition & Multi-Armed Bandits
- Classic Exploration Strategies
 - Epsilon Greedy
 - (Bayesian) Upper Confidence Bounds
 - Thomson Sampling
- Exploration in Deep RL:
 - Count-based Exploration: Density Models, Hashing
 - Prediction-based Exploration:
 - Forward Dynamics
 - Random Networks
 - Physical Properties
 - Memory-based Exploration:
 - Episodic Memory
 - Direct Exploration
- Summary and Outlook

Random Exploration: ϵ -greedy

- Exploration at random: ϵ -greedy
- Recap & let's formulate:
 - Take the best action most of the time, but do random exploration occasionally
 - Action-values are estimated according to the past experience (by averaging rewards associated with the action up to time step T):

$$\hat{Q}_T(a) = \frac{1}{N_T(a)} \sum_{t=1}^T r_t \mathbb{I}[a_t = a],$$

• where I is a binary indicator function and $N_t(a)$ is the action selection counter, i.e.:

$$N_t(a) = \sum_{t=1}^T \mathbb{I}[a_t = a].$$

• With a small probability of ϵ we take a random action (explore) and with probability of $1 - \epsilon$ we pick the best action that we have learnt so far (exploit):

$$a_T^* = \arg \max_{a \in \mathcal{A}} \hat{Q}_T(a)$$

How to pick ϵ ?

Random Exploration: ϵ -greedy

- Greedy may select a suboptimal action forever
 → Greedy has hence linear expected total regret
- ϵ -greedy continues to explore forever
 - with probability 1ϵ it selects $a = \arg \max_{a \in A} Q_T(a)$
 - with probability ϵ it selects a random action
- Will hence continue to select all suboptimal actions with (at least) a probability of $\frac{\epsilon}{|A|}$ $\rightarrow \epsilon$ -greedy, with a constant ϵ has a linear expected total regret

Random Exploration: *e*-greedy (Demo)

Random Exploration: ϵ -greedy

- Random exploration allows us to try out options that we have not much knowledge about yet
 - However: due to randomness, we end up exploring bad actions all over again!
 - What to do about it?

Option #1: decrease *e* over course of training might work

- We saw in the demo that this helps
- However, it is not easy to tune the parameters

Option #2: be optimistic with options of high uncertainty

- Prefer actions for which you do not have a confident value estimation yet
 → Those have a great potential to be high-rewarding!
- This idea is called Upper Confidence Bounds

Upper Confidence Bounds

• Idea: estimate an upper confidence $U_t(a)$ for each action value, such that with a high probability we satisfy

 $Q(a) \leq \hat{Q}_t(a) + U_t(a)$

• Next, we select the action that maximizes the upper confidence bound:

 $a_t^{UCB} = \arg \max_{a \in \mathcal{A}} \left[\hat{Q}_t(a) + U_t(a) \right]$

- The upper bound $U_t(a)$ is a function of the number of trials $N_t(a)$:
 - Small $N_t(a) \rightarrow$ large bound $U_t(a)$ (estimated value is uncertain)
 - Large $N_t(a)$ → small bound $U_t(a)$ (estimated value is certain/accurate)
 - Central limit theorem¹: the uncertainty decreases as $\sqrt{N_t(a)}$ (as long as the variance of rewards is bounded)

→ How can we efficiently estimate the upper confidence bound?

Upper Confidence Bounds

- Wait, let's put all the sidenotes on a single slide first:
 - We want to minimize $\sum_a N_t(a)\Delta_a$
 - If Δ_a is big \rightarrow we want $N_t(a)$ to be small
 - If $N_t(a)$ is big \rightarrow we want Δ_a to be small
 - Not all $N_t(a)$ can be small: their sum is (exactly) t
 - We know $N_t(a)$
 - We do not know Δ_a but what what can we learn about it?

Theorem: Hoeffding's Inequality

- Let X_1, \ldots, X_n be i.i.d. random variables whose value are in [0,1]
- Let $\bar{X}_T = \frac{1}{t} \sum_{t=1}^T X_t$ be the sample mean
- Then (for any u > 0):

$$P(\mathbb{E}[X] \geq \bar{X}_t + u) \leq e^{-2tu^2}$$

- Example: How likely is it to achieve an eye sum of at least 500 when rolling a dice for a hundred times?
 - X is a random variable that describes the result of a roll, its mean is $\mathbb{E}[X] = 3,5$ → $-2,5 \le X - \mathbb{E}[X] \le 2,5$
 - Hoeffding's Inequality:

$$P\left[\sum X \ge 500\right] = P\left[\sum (X - \mathbb{E}[X]) \ge 150\right] \le e^{\frac{-2 \cdot 150^2}{\sum (2,5+2,5)^2}} = e^{\frac{-45000}{100 \cdot 25}} = e^{-18} \approx 1,523 \cdot 10^{-8}$$

see also https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Upper Confidence Bounds

- Let us apply Hoeffding's Inequality to bandits with bounded rewards
- Given one target action *a*, let us consider
 - r_t(a) as the random variables
 - Q(a) as the true mean
 - $\hat{Q}_t(a)$ as the sample mean
 - *u* as the upper bound confidence bound, $u = U_t(a)$
- From this follows:

$$P[Q(a) > \hat{Q}_t(a) + U_t(a)] \le e^{-2tU_t(a)^2}$$

• We now want to pick a bound $U_t(a)$ so that with high chances the true mean lies below the sample mean + the upper confidence bound

 $\rightarrow e^{-2tU_t(a)^2}$ should be a small probability

• Given a tiny threshold p and solve for $U_t(a)$:

$$e^{-2tU_t(a)^2} = p \quad \Rightarrow U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

Upper Confidence Bounds: one more thing

- With collecting more and more samples, we will get more confident!
- Let us now do a tiny little tweak: reduce p as we observe more rewards:
 - For instance: $p = \frac{1}{t}$

$$U_t(a) = \sqrt{\frac{\log t}{2N_t(a)}}$$

- This ensures that we always keep exploring
- But we select the optimal action much more often as $t \rightarrow \infty$
- The vanilla **UCB1** algorithm uses:

$$U_t(a) = \sqrt{\frac{2 \log t}{N_t(a)}} \quad \text{and} \quad a_t^{UCB} = \arg \max_{a \in \mathcal{A}} Q(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

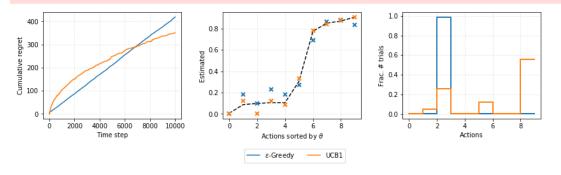
However, we could insert any hyper parameter *c* (here) to adjust this

 \rightarrow UCB (with $c = \sqrt{2}$) has a logarithmic expected total regret

Upper Confidence Bounds: UCB1 (demo)

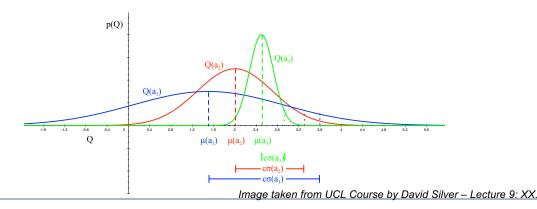
class UCB1(Solver): def init (self, bandit, init proba=1.0): super(UCB1, self).__init__(bandit) self.t = 0 self.estimates = [init_proba] * self.bandit.n @property def estimated probas(self): return self.estimates def run_one_step(self): self.t += 1 # Pick the best one with consideration of upper confidence bounds. i = max(range(self.bandit.n), key=lambda x: self.estimates[x] + np.sqrt(2 * np.log(self.t) / (1 + self.counts[x]))) r = self.bandit.generate_reward(i) self.estimates[i] += 1. / (self.counts[i] + 1) * (r - self.estimates[i]) return i

/Users/mut/workspace/anaconda3/envs/py36/lib/python3.6/site-packages/ipykernel_launcher.py:44: MatplotlibDeprecation Warning: Passing the drawstyle with the linestyle as a single string is deprecated since Matplotlib 3.1 and support will be removed in 3.3; please pass the drawstyle separately using the drawstyle keyword argument to Line2D or set_d rawstyle() method (or ds/set_ds()).



Extension: Bayesian UCB

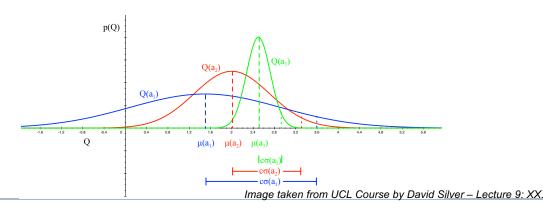
- In UCB we did not assume any prior on the reward distribution
 - Hence, from Hoeffding's Inequality follows a relatively pessimistic bound
- Idea: prior knowledge on the distribution allows for a better bound!
- Example:
 - We expect the mean reward of the slot machines to follow (independent) Gaussians
 - We may set the upper bound to the 95% confidence interval by setting $\hat{U}_t(a)$ to be twice the standard deviation
- Use the posterior to guide exploration!
 - UCB
 - Thompson Sampling (probability matching)



Extension: Bayesian UCB

Example

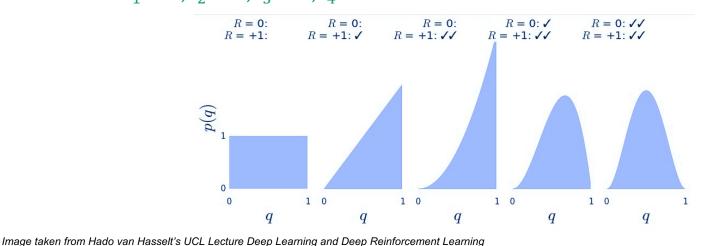
- We again consider a Bernoulli distribution: rewards are either 0 or +1
- Prior: uniform on [0,1] $\forall a \in \mathcal{A}$ (each mean reward is equally likely)
- The posterior is a Beta distribution $Beta(\alpha_a, \beta_a)$ with initial parameters $\alpha_a = 1$ and $\beta_a = 1$ for each action a
- Update the posterior:
 - $\alpha_{a_t} \leftarrow \alpha_{a_t} + 1$, if $r_t = 1$
 - $\quad \beta_{a_t} \leftarrow \beta_{a_t} + 1, \text{ if } r_t = 0$

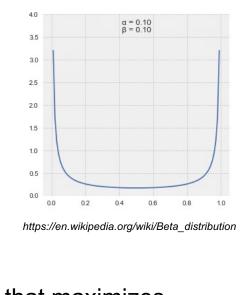


Extension: Bayesian UCB

Example

- We again consider a Bernoulli distribution: rewards are either 0 or +1
- Prior: uniform on [0,1] $\forall a \in \mathcal{A}$ (each mean reward is equally likely)
- The posterior is a Beta distribution $Beta(\alpha_a, \beta_a)$ with initial parameters $\alpha_a = 1$ and $\beta_a = 1$ for each action a
- Update the posterior:
 - $\alpha_{a_t} \leftarrow \alpha_{a_t} + 1$, if $r_t = 1$
 - $\beta_{a_t} \leftarrow \beta_{a_t} + 1$, if $r_t = 0$
- Assume: $r_1 = 1, r_2 = 1, r_3 = 0, r_4 = 0$





→ Pick action that maximizes $\hat{Q}_t(a) + c \cdot \sigma(a)$

Extension: Bayesian UCB (demo)

class BayesianUCB(Solver): """Assuming Beta prior.""" def __init__(self, bandit, c=3, init_a=1, init_b=1): c (float): how many standard dev to consider as upper confidence bound. init_a (int): initial value of a in Beta(a, b). init_b (int): initial value of b in Beta(a, b). super(BayesianUCB, self).__init__(bandit) self.c = c self._as = [init_a] * self.bandit.n self._bs = [init_b] * self.bandit.n @property def estimated probas(self): return [self._as[i] / float(self._as[i] + self._bs[i]) for i in range(self.bandit.n)] def run one step(self): # Pick the best one with consideration of upper confidence bounds. i = max(range(self.bandit.n), key=lambda x: self._as[x] / float(self._as[x] + self._bs[x]) + beta.std(self._as[x], self._bs[x]) * self.c r = self.bandit.generate_reward(i) # Update Gaussian posterior self._as[i] += r self._bs[i] += (1 - r) return i 0.8 800 0.8 Sec 0.6 J 600 2 0.6 0.4 400 0.4 ປ<u>ี</u> 200 0.2 0.2 0 0.0 2000 4000 6000 8000 10000 10 15 10 15 Time step Actions Actions sorted by θ ε-Greedy — UCB1 — Bayesian UCB

Exploration via Probability Matching

We can also try the idea of directly sampling the action

• Select action *a* according to probability that *a* is the optimal action (given the history of everything we observed so far):

$$\pi_t(a|h_t) = P[Q(a) > Q(a'), \forall a' \neq a | h_t]$$
$$= \mathbb{E}_{r|h_t} \left[\mathbb{I} \left(a = \arg \max_{a \in \mathcal{A}} Q(a) \right) \right]$$

Probability matching via Thompson Sampling:

- 1. Assume Q(a) follows a Beta distribution for the Bernoulli bandit
 - As Q(a) is the success probability of θ
 - Beta(α, β) is within [0,1], and α and β relate to the counts of success/failure
- 2. Initialize prior (e.g., $\alpha = \beta = 1$ or something different/what we think it is)
- 3. At each time step t we sample an expected reward $\hat{Q}(a)$ from the prior Beta (α_i, β_i) for every action
 - We select and execute the best action among the samples: $a_i^{TS} = \arg \max_{a \in \mathcal{A}} \hat{Q}(a)$
- 4. With the newly observed experience we update the Beta distribution:

$$\alpha_i \leftarrow \alpha_i + r_i \mathbb{I}[a_t^{TS} = a_i]$$

$$\beta_i \leftarrow \beta_i + (1 - r_i) \mathbb{I}[a_t^{TS} = a_i]$$

Exploration via Probability Matching (demo)

class ThompsonSampling(Solver): def __init__(self, bandit, init_a=1, init_b=1): init_a (int): initial value of a in Beta(a, b). init_b (int): initial value of b in Beta(a, b). super(ThompsonSampling, self).__init__(bandit) self._as = [init_a] * self.bandit.n self._bs = [init_b] * self.bandit.n @property def estimated_probas(self): return [self._as[i] / (self._as[i] + self._bs[i]) for i in range(self.bandit.n)] def run_one_step(self): samples = [np.random.beta(self._as[x], self._bs[x]) for x in range(self.bandit.n)] i = max(range(self.bandit.n), key=lambda x: samples[x]) r = self.bandit.generate_reward(i) self._as[i] += r self._bs[i] += (1 - r) return i 1.0 500 0.8 0.8 400 0.6 0.6 300 . 4.0 Estin +++ 0.4 200 ų 2 0.2 100 0.2 0.0 0.0 6000 2000 4000 8000 10000 0 Time step Actions Actions sorted by θ - AnnealedEpsilonGreedy - UCB1 - Bayesian UCB ε-Greedv — Thompson Sampling

Exploration-Exploitation: Summary

• We need exploration because information is valuable

No Exploration —	→ Random Exploration	Smart Exploration
greedy	<i>ϵ</i> -greedy	UCB, Bayesian UCB, Thompson Sampling

- What did we not cover?
 - Boltzman exploration: the agent draws actions from a Boltzmann distribution (softmax) over the learned Q-values, regulated by a temperature parameter τ
 - When policies are approximated with neural networks:
 - Entropy loss terms: we can add an entropy term $H(\pi(a|s))$ into the loss function, encouraging the policy to take more diverse actions
 - Noise-based Exploration: add noise into the observation, action or even parameter space^{1,2}

¹ Meire Fortunato et al.: Noisy Networks for Exploration. ICLR 2018.
 ² Matthias Plappert et al.: Parameter Space Noise for Exploration. ICLR 2018.

