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Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Motivation: Exploration in Life
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Restaurant Selection

[1] Berkeley AI course
[2] https://medium.com/deep-math-machine-learning-ai/ch-12-1-model-free-reinforcement-learning-algorithms-monte-carlo-sarsa-q-learning-65267cb8d1b4
[3] https://designrshub.com/2012/05/3-smart-advertising-tips-for-an-effective-ad-placement.html

[2]

Oil Drilling

[3]

Online Ad Placement

go to your favorite restaurant
vs.

try something new

drill at the best-known location
vs.

drill at a new location

show most successful ads
vs.

show a different random ad

exploit:

explore:

Taken from David Silver’s Lecture on XX.

[1]



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Motivation: RL so far

§ Improving the policy with 𝜋! 𝑠 = argmax
" ∈𝒜

𝑄% 𝑠, 𝑎 poses problems for bootstrapping the Q-function

§ We used 𝜀-greedy policy improvement
à occasionally try something “suboptimal” (at least we think it is)
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[1] https://www.youtube.com/watch?v=V1eYniJ0Rnk
[2] https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
[3] https://ljvmiranda921.github.io/projects/2018/09/14/pfn-internship/

[1] [2] [3]



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Motivation: RL so far

§ Oops, I forgot to tell you:
§ 𝜀-greedy exploration does not work well on many tasks and even fails for some of them!

§ Some of the Atari 2600 series games known for their hard exploration:

Why are they so much different?
§ Getting key = opening door à reward

§ Getting killed by skull à nothing
Ø Finishing the game only weakly

correlates with reward structure
of the game!
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Montezuma’s Revenge Pitfall!Private Eye Seaquest

à

[1] Aytar et al.: Playing Hard Exploration Games by Watching Youtube. NeurIPS 2018.

[1]



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Motivation
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OpenAI Blog. Reinforcement Learning with Prediction-Based Rewards. October 31, 2018.

§ But: there is a solution to this – spoiler!



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Definition

§ There are two potential definitions of the exploration problem:
1. How can an agent discover high-reward strategies that require a temporally extended sequence of complex behaviors 

that, individually, are not rewarding? 
2. How can an agent decide whether to attempt new behaviors (to discover ones with higher reward) or continue to do 

the best thing it knows so far? 

§ Both definitions stem from the same problem:
§ Exploration: do things you haven’t done before

(in the hopes of getting even higher reward)
à increase knowledge

§ Exploitation: do what you know to yield highest reward
à maximize performance based on knowledge
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See also Sergey Levine’s Lecture CS285: Exploration.



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Definition

§ The dilemma comes from incomplete information:
§ we need to gather enough information to make best overall decisions,
§ … while keeping the risk under control!

§ With exploitation we take advantage of the best option we know
§ With exploration we take risks to learn about unknown options.
§ The best long-term strategy may involve short-term sacrifices

§ Ok, we got it. Exploration can be very hard…
§ But: how can we derive an optimal exploration strategy?

§ Mathematically: what does optimal even mean?
§ In online learning we use the term “regret” to express this (we will come to this later)
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Multi-armed bandits
(1-step stateless

RL problems)

Contextual bandits
(1-step

RL problems)

Small, finite MDPs
(e.g., tractable planning,

model-based RL)

Large, infinite MDPs
(e.g., continuous spaces)

theoretically tractable theoretically intractable

(illustration adapted from Sergey Levine’s CS285 class from UC Berkeley)



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Problem Definition

§ How can an exploration problem be made tractable?
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Large & infinite MDPsSmall & finite MDPsMulti-armed bandits
Contextual bandits

• Exploration problem can be 
formalized as POMDP 
identification

• Then policy learning is then 
easy (even with POMDP)

• We can frame the 
exploration problem as a 
Bayesian model 
identification

• Then reason about value 
of information

• Optimal methods do not 
work here

• We need to take them as 
inspiration, or we use 
hacks

See also Sergey Levine’s Lecture CS285: Exploration.



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Multi-Armed Bandits

§ The multi-armed-bandit problem is a classic problem used to study the
exploration vs. exploitation dilemma

§ Imagine you are in a casino with multiple slot machines, each configured
with an unknown reward probability:

§ Under the assumption of an infinite number of trials:

à What is the best strategy to achieve highest long-term rewards? 

Naive Solution:
1. Play each machine for many many many rounds
2. Estimate true reward probability of each machine (law of large numbers)
3. Act greedily with respect to the uncovered probabilities
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https://www.gameroomshow.com

45%

Slot Machine #1

60%

Slot Machine #2

20%

Slot Machine #3

25%

Slot Machine #4

?



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Multi-Armed Bandits

A Bernoulli multi-armed bandit can be described as a tuple of 𝒜,ℛ , where:
§ We have 𝑁 machines and their associated reward probabilities {𝜃&, … , 𝜃'}
§ At each time step 𝑡 we take an action 𝑎( on a single slot machine and receive a reward 𝑟(
§ 𝒜 is a set of actions (i.e., arms): 𝒜 = {pull&,pull), … ,pull'}

§ Each action refers to the interaction with one slot machine
à the true value of the action 𝑎 is the expected reward 𝑄 𝑎 = 	𝔼 𝑟|𝑎 = 𝜃

§ If action 𝑎( at the time step 𝑡 is on the 𝑖-th machine, then 𝑄 𝑎( = 𝜃* (note: value function is unknown!)
§ ℛ is a reward function:

§ We observe a reward 𝑟 in a stochastic fashion. At the time step 𝑡, 𝑟( = ℛ 𝑎( = 𝑝 𝑟|𝑎
à returns reward 1 with a probability of 𝜃* = 𝑄 𝑎( , or 0 otherwise (i.e., with probability 1 − 𝜃*).

§ The distribution 𝑝 𝑟|𝑎 is fixed, but unknown

§ Goal: maximize cumulative reward ∑(+&, 𝑟(
§ As usual, 𝑝 r|a is unknown but we still want to estimate 𝑄(𝑎)

à This is a simplified MDP (as there are no states)
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POMDP interpretation:
this is the state, but we don’t know it
• solving this yields the optimal exploration
• we could maintain a belief over the state

(prob-distr. over the states à huge)



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Regret

§ Our goal is to maximize the cumulative reward ∑(+&, 𝑟(
§ The optimal reward probability 𝜃∗ of the optimal action 𝑎∗ is

𝜃∗ = 𝑄 𝑎∗ = max
"∈𝒜

𝑄 𝑎 = max
&.*./

𝜃* = max
"∈𝒜

𝔼 𝑟(|𝑎( = 𝑎

§ But how can we reason about the exploration-exploitation trade-off?
à Regret as a one-step opportunity loss

§ Our loss function is the total regret we might have by not select the optimal action up to the time step 𝑇:

ℒ, = 	𝔼 B
(+&

,

𝜃∗ − 𝑄 𝑎( = B
"∈𝒜

𝑁, 𝑎 ∆"
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per-action regret

action-selection counterwhat we should have been doing

what we did



Exploration-Exploitation: Motivation & Multi-Armed Bandits
Regret

§ If we knew the optimal action with the best reward, then:
§ Maximize cumulative rewards ≡ minimize total regret
§ The agent cannot observe or sample the real regret directly 
§ But we can use it to analyze different exploration strategies!

§ Note:
§ The sum for the total regret extends beyond (single step) episodes
§ The view extends over “lifetime of learning”, rather than over “current episode”
§ A good algorithm ensures small visitation counts for large action regrets

(but action regrets are unknown…)

§ From here, we can derive 3 different bandit strategies: 
1. No exploration: very naïve approach and a bad one usually
2. Exploration at random
3. Smart exploration with preference to explore actions with high uncertainty
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Classic Exploration Strategies
Random Exploration: 𝝐-greedy

§ Exploration at random: 𝜖-greedy
§ Recap & let’s formulate:

§ Take the best action most of the time, but do random exploration occasionally
§ Action-values are estimated according to the past experience (by averaging rewards associated with the action up to 

time step 𝑇):

F𝑄, 𝑎 =
1

𝑁,(𝑎)
B
(+&

,

𝑟(𝕀 𝑎( = 𝑎 ,

§ where 𝕀 is a binary indicator function and 𝑁((𝑎) is the action selection counter, i.e.:

𝑁( 𝑎 =B
(+&

,
𝕀 𝑎( = 𝑎 .

§ With a small probability of 𝜖 we take a random action (explore) and with probability of 1 − 𝜖 we pick the best action that 
we have learnt so far (exploit):

𝑎,∗ = argmax
"∈𝒜

F𝑄, 𝑎 .
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How to pick 𝜖?

is this enough?



Classic Exploration Strategies
Random Exploration: 𝝐-greedy

§ Greedy may select a suboptimal action forever
à Greedy has hence linear expected total regret

§ 𝜖-greedy continues to explore forever

§ with probability 1 − 𝜖 it selects 𝑎 = argmax
"∈𝒜

𝑄,(𝑎)

§ with probability 𝜖 it selects a random action

§ Will hence continue to select all suboptimal actions with (at least) a probability of 0
𝒜

à 𝜖-greedy, with a constant 𝜖 has a linear expected total regret
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Classic Exploration Strategies
Random Exploration: 𝝐-greedy (Demo)
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Classic Exploration Strategies
Random Exploration: 𝝐-greedy

§ Random exploration allows us to try out options that we have not much knowledge about yet
§ However: due to randomness, we end up exploring bad actions all over again!
§ What to do about it?

§ Option #1: decrease 𝝐 over course of training might work
§ We saw in the demo that this helps
§ However, it is not easy to tune the parameters

§ Option #2: be optimistic with options of high uncertainty
§ Prefer actions for which you do not have a confident value estimation yet

à Those have a great potential to be high-rewarding!
§ This idea is called Upper Confidence Bounds
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Classic Exploration Strategies

§ Idea: estimate an upper confidence 𝑈( 𝑎 for each action value, such that with a high probability we satisfy

𝑄 𝑎 ≤ F𝑄( 𝑎 + 𝑈((𝑎)

§ Next, we select the action that maximizes the upper confidence bound:

𝑎(123 = argmax
"∈𝒜

F𝑄( 𝑎 + 𝑈((𝑎)

§ The upper bound 𝑈( 𝑎 is a function of the number of trials 𝑁((𝑎):
§ Small 𝑁( 𝑎 à large bound 𝑈((𝑎) (estimated value is uncertain)
§ Large 𝑁( 𝑎 à small bound 𝑈((𝑎) (estimated value is certain/accurate)

§ Central limit theorem1: the uncertainty decreases as 𝑁((𝑎)
(as long as the variance of rewards is bounded)

à How can we efficiently estimate the upper confidence bound?

20

1 https://en.wikipedia.org/wiki/Central_limit_theorem

Upper Confidence Bounds



Classic Exploration Strategies

§ Wait, let’s put all the sidenotes on a single slide first:

§ We want to minimize ∑"𝑁( 𝑎 ∆"
§ If ∆" is big à we want 𝑁((𝑎) to be small
§ If 𝑁((𝑎) is big à we want ∆" to be small

§ Not all 𝑁((𝑎) can be small: their sum is (exactly) 𝑡
§ We know 𝑁((𝑎)
§ We do not know ∆" - but what what can we learn about it?

21

Upper Confidence Bounds



Classic Exploration Strategies
Theorem: Hoeffding’s Inequality

§ Let 𝑋&, … , 𝑋' be i.i.d. random variables whose value are in [0,1]

§ Let Q𝑋, =
&
(
∑(+&, 𝑋( be the sample mean

§ Then (for any 𝑢 > 0):
𝑃 𝔼 𝑋 ≥ Q𝑋( + 𝑢 ≤ 𝑒4)(5!

§ Example: How likely is it to achieve an eye sum of at least 500 when rolling a dice for a hundred times?

§ X is a random variable that describes the result of a roll, its mean is 𝔼 𝑋 = 3,5
à −2,5 ≤ 𝑋 − 𝔼 𝑋 ≤ 2,5

§ Hoeffding‘s Inequality:

𝑃 "𝑋 ≥ 500 = 𝑃 " 𝑋 − 𝔼 𝑋 ≥ 150 ≤ 𝑒
"#⋅%&'!

∑ #,&*#,& ! = 𝑒
"+&'''
%''⋅#& = 𝑒"%, ≈ 1,523 ⋅ 10",

22

see also https://en.wikipedia.org/wiki/Hoeffding%27s_inequality



Classic Exploration Strategies

§ Let us apply Hoeffding’s Inequality to bandits with bounded rewards
§ Given one target action 𝑎, let us consider

§ 𝑟( 𝑎 as the random variables
§ 𝑄 𝑎 as the true mean

§ F𝑄((𝑎) as the sample mean
§ 𝑢 as the upper bound confidence bound, 𝑢 = 𝑈( 𝑎

§ From this follows:
𝑃 𝑄 𝑎 > F𝑄( 𝑎 + 𝑈((𝑎) ≤ 𝑒4)(1- " !	

§ We now want to pick a bound 𝑈( 𝑎 so that with high chances the true mean lies below the sample mean + the upper 
confidence bound
à 𝑒4)(1- " !

should be a small probability

§ Given a tiny threshold 𝑝 and solve for 𝑈((𝑎):

𝑒4)(1- " ! = 𝑝 à 𝑈( 𝑎 = 4 678 9
)/-(")

23

Upper Confidence Bounds



Classic Exploration Strategies
Upper Confidence Bounds: one more thing

§ With collecting more and more samples, we will get more confident!
§ Let us now do a tiny little tweak: reduce 𝑝 as we observe more rewards:

§ For instance: 𝑝 = &
(

𝑈( 𝑎 =
log 𝑡
2𝑁((𝑎)

§ This ensures that we always keep exploring
§ But we select the optimal action much more often as 𝑡 → ∞

§ The vanilla UCB1 algorithm uses:

𝑈( 𝑎 = ) 678 (
/- "

and    𝑎(123 = argmax
"∈𝒜

𝑄 𝑎 + ) 678 (
/-(")

§ However, we could insert any hyper parameter 𝑐 (here) to adjust this
à UCB (with 𝑐 = 2) has a logarithmic expected total regret
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Classic Exploration Strategies
Upper Confidence Bounds: UCB1 (demo)
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Classic Exploration Strategies
Extension: Bayesian UCB

§ In UCB we did not assume any prior on the reward distribution
§ Hence, from Hoeffding’s Inequality follows a relatively pessimistic bound

§ Idea: prior knowledge on the distribution allows for a better bound!
§ Example:

§ We expect the mean reward of the slot machines to follow (independent) Gaussians

§ We may set the upper bound to the 95% confidence interval by setting �̀�( 𝑎 to be twice the standard deviation
§ Use the posterior to guide exploration!

§ UCB
§ Thompson Sampling (probability matching)
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Lecture 9: Exploration and Exploitation

Multi-Armed Bandits

Bayesian Bandits

Bayesian UCB Example: Independent Gaussians

Assume reward distribution is Gaussian, Ra(r) = N (r ;µa, �2
a)

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

Q

Q(a3)Q(a2)

Q(a1)

p(Q)

c!(a3)
c!(a2)
c!(a1)

µ(a3)µ(a2)µ(a1)

Compute Gaussian posterior over µa and �2
a (by Bayes law)

p
⇥
µa, �

2

a | ht
⇤
/ p

⇥
µa, �

2

a

⇤ Y

t | at=a

N (rt ;µa, �
2

a)

Pick action that maximises standard deviation of Q(a)

at = argmax
a2A

µa + c�a/
p
N(a)

Image taken from UCL Course by David Silver – Lecture 9: XX.



Classic Exploration Strategies
Extension: Bayesian UCB

Example
§ We again consider a Bernoulli distribution: rewards are either 0 or +1
§ Prior: uniform on 0,1 	∀𝑎 ∈ 𝒜 (each mean reward is equally likely)
§ The posterior is a Beta distribution Beta 𝛼", 𝛽" with initial parameters 𝛼" = 1 and 𝛽" = 1 for each action 𝑎
§ Update the posterior:

§ 𝛼"- ← 𝛼"- + 1, if 𝑟( = 1
§ 𝛽"- ← 𝛽"- + 1, if 𝑟( = 0
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Classic Exploration Strategies
Extension: Bayesian UCB

Example
§ We again consider a Bernoulli distribution: rewards are either 0 or +1
§ Prior: uniform on 0,1 	∀𝑎 ∈ 𝒜 (each mean reward is equally likely)
§ The posterior is a Beta distribution Beta 𝛼", 𝛽" with initial parameters 𝛼" = 1 and 𝛽" = 1 for each action 𝑎
§ Update the posterior:

§ 𝛼"- ← 𝛼"- + 1, if 𝑟( = 1
§ 𝛽"- ← 𝛽"- + 1, if 𝑟( = 0

§ Assume: 𝑟& = 1, 𝑟) = 1, 𝑟< = 0, 𝑟= = 0
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https://en.wikipedia.org/wiki/Beta_distribution

Image taken from Hado van Hasselt’s UCL Lecture Deep Learning and Deep Reinforcement Learning

à Pick action that maximizes
"𝑄! 𝑎 + 𝑐 ⋅ 𝜎(𝑎)



Classic Exploration Strategies
Extension: Bayesian UCB (demo)
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Classic Exploration Strategies

We can also try the idea of directly sampling the action
§ Select action 𝑎 according to probability that 𝑎 is the optimal action (given the history of everything we observed so far):

𝜋( 𝑎|ℎ( = 𝑃 𝑄 𝑎 > 𝑄 𝑎′ , ∀𝑎! ≠ 𝑎|	ℎ(
𝜋( 𝑎|ℎ( = 𝔼>|@- 𝕀 𝑎 = argmax

"∈𝒜
𝑄 𝑎

Probability matching via Thompson Sampling:
1. Assume 𝑄 𝑎 follows a Beta distribution for the Bernoulli bandit

§ As 𝑄(𝑎) is the success probability of 𝜃
§ Beta 𝛼, 𝛽 is within 0,1 , and 𝛼 and 𝛽 relate to the counts of success/failure

2. Initialize prior (e.g., 𝛼 = 𝛽 = 1 or something different/what we think it is)

3. At each time step 𝑡 we sample an expected reward F𝑄 𝑎 from the prior Beta 𝛼*, 𝛽* for every action

§ We select and execute the best action among the samples: 𝑎*,A = argmax
"∈𝒜

F𝑄 𝑎

4. With the newly observed experience we update the Beta distribution:

𝛼* ← 𝛼* + 𝑟*𝕀 𝑎(,A = 𝑎*
𝛽* ← 𝛽* + (1 − 𝑟*)𝕀 𝑎(,A = 𝑎*

30

Exploration via Probability Matching



Classic Exploration Strategies
Exploration via Probability Matching (demo)
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Classic Exploration Strategies

§ We need exploration because information is valuable

§ What did we not cover?
§ Boltzman exploration: the agent draws actions from a Boltzmann distribution (softmax) over the learned Q-values, 

regulated by a temperature parameter 𝜏
§ When policies are approximated with neural networks:

§ Entropy loss terms: we can add an entropy term 𝐻 𝜋 𝑎|𝑠 into the loss function, encouraging the policy to take 
more diverse actions

§ Noise-based Exploration: add noise into the observation, action or even parameter space1,2
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No Exploration Random Exploration Smart Exploration
greedy 𝜖-greedy UCB, Bayesian UCB,

Thompson Sampling

1 Meire Fortunato et al.: Noisy Networks for Exploration. ICLR 2018.
2 Matthias Plappert et al.: Parameter Space Noise for Exploration. ICLR 2018.

Exploration-Exploitation: Summary


