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Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint 
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Representation Workshop.
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First Citizen: We are accounted poor citizens, the patricians good. What authority 
surfeits on would relieve us: if they would yield us but the superfluity, while it were 
wholesome, we might guess they relieved us humanely; but they think we are too 
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particularise their abundance; our sufferance is a gain to them Let us revenge this 
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Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., 
Voss, C., ... & Christiano, P. F. (2020). Learning to 

summarize with human feedback. Advances in Neural 
Information Processing Systems, 33, 3008-3021.
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On the secret seashore, white like a pigeon
we thirsted at noon; but the water was brackish.

On the golden sand, we wrote her name;
but the sea-breeze blew and the writing vanished.

With what spirit, what heart, what desire and passion
we lived our life; a mistake! So we changed our life.

https://en.wikipedia.org/wiki/Denial_(poem)
https://www.nobelprize.org/prizes/literature/1963/seferis/facts/
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Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word 
embeddings. Advances in neural information processing systems, 29.
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§ Reinforcement Learning:
§ PPO algorithm
§ Added constraint to stay close to SFT policy
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Peng, X. B., Abbeel, P., Levine, S., & van de Panne, M. (2018). Deepmimic: Example-guided deep reinforcement learning of physics-based 
character skills. ACM Transactions on Graphics (TOG), 37(4), 143.
Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement learning from human preferences. Advances in 
neural information processing systems, 30.
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Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human 
feedback. Advances in Neural Information Processing Systems, 35, 27730-27744.
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§ What about fact-checking?
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Liu, N. F., Zhang, T., & Liang, P. (2023). Evaluating verifiability in generative search engines. arXiv preprint arXiv:2304.09848.
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§ Decision Transformer:
§ Embeddings: state, action, return
§ Model/policy learns to predict 

deterministic actions
§ During deployment we give the level of 

return to be achieved in the first time-
step

à Leads to Multi-Task Offline RL
• Stable training (supervised learning)
• Easier tuning
• Consistent results
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Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., ... & Mordatch, I. (2021). Decision transformer: Reinforcement learning via 
sequence modeling. Advances in neural information processing systems, 34, 15084-15097.
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§ Decision Transformer:
§ Embeddings: state, action, return, 

accumulated cost/constraints
§ Model/policy learns to predict 

deterministic stochastic actions
§ During deployment we give the level of 

return and cost/constraint to be 
achieved in the first time-step

à Leads to Safe Multi-Task Offline RL
• Stable training (supervised learning)
• Easier tuning
• Consistent results

59

Liu, Z., Guo, Z., Yao, Y., Cen, Z., Yu, W., Zhang, T., & Zhao, D. (2023). Constrained decision transformer for offline safe reinforcement 
learning. arXiv preprint arXiv:2302.07351.
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